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Abstract For chemistry the theoretical representation of

the forces connecting atoms in molecules was and is a

central problem. The Atomic Orbital and the Molecular

Orbital are basic building blocks in the Heitler–London

(HL) and in the Linear Combination of Atomic Orbitals–

Molecular Orbital (LCAO-MO) methods, which have lead

to the construction of modern Valence Bond and Hartree–

Fock methods (and related extensions). However, accurate

predictions from non semi-empirical methods often require

enormous amount of computer power, if applied to mole-

cules of reasonable size and current chemical interest. We

have critically re-examined the two basic methods and

suggested a few extensions. Merging of the Hartree–Fock

with the Heitler–London algorithms, as recently proposed

in the Hartree–Fock–Heitler–London (HF–HL) method,

reduces the length of the expansions needed in AO or MO

ab initio models in the computation of binding energy; this

simplification allows easy interpretation of the resulting

wave function. The HF–HL method is exemplified with

systematic computations on ground and excited state of the

hydrides and homonuclear diatomic molecules with atoms

of the first and second period of the periodic table. Further,

we show that the HF–HL method is derivable from a wave

function constructed with a new type of orbital, the Chemical

orbital (CO), which embodies the characterization of MO

near equilibrium, AO at dissociation and at the united atom.

Preliminary computations with CO are included. The new

method provides the conceptual origin of both the HF and

VB approaches, thus the foundation of an 80 years effort in

variational quantum chemistry.

Keywords Atomic � Molecular � Chemical orbitals �
Hartree–Fock � Heitler–London � Hartree–Fock–
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1 Introduction

In this work, we consider models proposed to represent the

chemical bond. However, to define a chemical bond we

need a number of concepts, particularly those of ‘‘mole-

cule’’, ‘‘atom’’, ‘‘electron’’, and ‘‘nucleus’’. These concepts

have slowly evolved in the last two millennia. For the

evolution of chemical models in the Western world,

describing chemical theories from Greece classical time to

1914, the year of the Bohr atom, we refer to a recent study

[1], to the encyclopedic work by Geymonat [2] and to the

volume by Bensaude-Vincent and Stengers [3].

We follow in some detail the evolution of the atomic

and molecular orbital models by presenting representative

sets of computations on simple diatomic molecules with

the traditional Hartree–Fock (HF) and Heitler–London

(HL) models. Further, we expose the Hartree–Fock–

Heitler–London model (HF-HL) recently proposed and

tested. The computational examples for this model are

diatomic hydrides, HX, and homopolar molecules, X2, with

X the atoms of the first and second period of the atomic

table. Analyses of the HF–HL model leads to propose a
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new one-electron function, designated Chemical Orbital

(CO), tested for the H2 and LiH ground state molecules.

In this section, we outline the presentation of our work.

In Sect. 2, we briefly recall the emergence of quantum

mechanics and its early impact on chemical models.

In Sect. 3, we introduce the atomic and the molecular

orbitals, AO and MO, the one-electron function concepts

proposed in the ‘‘fantastic few years’’ when Slater [4]

introduced the determinantal form to represent the electronic

wave function, Born and Oppenheimer [5] assumed the near-

independence of electronic and nuclear motions, Hund [6]

and Mulliken [7] proposed linear combination of Atomic

orbital, the LCAO-MO model, and Heitler and London

presented what today is called the Heitler–London model [8].

Since those early days two different models, LCAO–

MO and HL, have been widely used, based one on MOs the

second on AOs, the ‘‘bricks’’ to construct the zero order

molecular wave functions, as explained by Herzberg [9] in

his classical volume. The two methods yield solutions

which differ from the exact non-relativistic solution by an

amount called by Wigner [10] ‘‘correlation energy’’, Ec;

this correction can be obtained as electronic density func-

tionals [11–16], the main task of Sect. 3. The use of density

functional to correct the HF energies was essentially

ignored in the period 1930s–1980s, with few exceptions

[11–16]. To cope with the correlation error the HL model

evolved into the several Valence Bond (VB) variants [17–

23]; likewise the LCAO-MO (in the improved form of

molecular Hartree–Fock (HF) [24–28]) evolved into the

Multi-Configurations (MC) [29–36] and Configuration

interaction (CI) [37, 38] expansion techniques (generally

very long linear combinations of determinants).

In Sect. 4, we report and compare HF and HL computa-

tions, using the same basis sets, on hydrides and homopolar

diatomic molecules, needed in the following of the paper.

In Sect. 5, we discuss the near degeneracy of configu-

rations in HF and HL solutions, presenting various

decompositions of the correlation energy correction, a

basic aspect in the HF–HL strategy.

In Sect. 6, we present the HF–HL model [39–44]. In

Sect. 7, we exemplify the HF–HL model by computing

binding energies [42, 43] for the diatomic molecules pre-

vious analyzed with the HF and HL models, using basis

sets of the same type as those used in Sect. 4.

In Sect. 8, we account for part of the atomic correlation

neglected in Sect. 7; for this task we use mainly the Cou-

lomb hole density functional approximation (DFA) [41]

summarized in Sect. 3.

In Sect. 9, we show that the HF–HL model can easily

and correctly predict excited state transitions.

In Sect. 10, we show that the HF–HL model is an

approximation of a more general model, the Chemical

orbitals wave function, WCO, constructed with a new,

compact and easily interpretable one-electron function

[44], the CO. Applications of the Chemical orbital method

to the H2 and LiH ground states are reported in Sects. 11

and 12, respectively.

Section 13 attempts to trace the genealogy of the

HF–HL method and of the CO representation from selected

approximations in computational chemistry. In Sect. 14,

we present a conclusion.

In modern computational quantum chemistry two goals

are essential: first, quantitative accuracy and, second,

physical interpretability to allow reliably transferability of

computational predictions from molecule to molecule, a

step aiming to a ‘‘quantitative theory for properties

transferability’’. By now computational chemistry has

become another ‘‘laboratory’’ technique, based on complex

manipulation of numerical data via computer codes often

commercially available. Thanks to the progress in com-

puter technology, particularly parallel computers [45], the

HF-based models (CI and MC) have essentially reached the

goal of quantitative accurate predictions [34, 36] for small

molecules, and the different VB models [23] have made

notable progress towards physical interpretability. In the

mean time perturbation approaches have also made most

notable strides [46–48], but again with the ‘‘sine qua non’’

condition of ample computational facilities. Recently,

Quantum Monte Carlo (QMC) computations offer a most

evident example of numerical techniques fully dependent

on availability of very ample computer power [49, 50]. To

lessen the extreme computational demand of ab initio

methods, semi-empirical methods were used in the past

[51] as well today [52–54], particularly in applied

computational chemistry; this trend constitutes another

indication of the need for some novel approach for the

prediction of bond energies.

For reviews on the present status and developments of

quantum chemistry we refer to two recent volumes [55, 56]

and to a recent special issue in the Journal of Computa-

tional Chemistry [23]. For a review on progress of parallel

computer technology we refer to a special issue in Parallel

computing [45].

2 Early quantum theory in chemistry

The discovery of the electron by Thomson (1897) and the

subsequent need of a new mechanics shuttered the sim-

plicity of nineteenth century chemistry [1–3]. The classical

continuous energy distribution idea was contested by Plank

[57], the classical space–time frame was replaced with new

spaces by Hilbert [58] and Einstein [59]. Nothing was left

unchallenged as a consequence of de Broglie [60] wave

mechanics, of the electron spin discovery by Uhlenbeck

and Goudsmit [61], of the Pauli principle [62], of the 1926

210 Theor Chem Acc (2009) 123:209–235

123



Schrödinger equation [63], of the Fermi [64] and Thomas

[65] simple electronic density formulation of the atomic

energy, and of Dirac relativistic formulation [66]. New

concepts were introduced like uncertainty, wave

functions, orbitals and spinors, probability density,

multiplicity of states, couplings in the motion of electrons

and spins, etc.

Initially, following the introduction of Bohr’s model

[67], chemist’s intuition did provide a bridge linking

chemical structures to the finding of the new atomic physic.

Thus Lewis [68] assumed that two electrons, one from one

atom and the second from another atom, ‘‘the electron-

pair’’, form the chemical bond between atoms in molecules

(a rather unorthodox view, since from the Coulomb law

two electrons repel each other). The Lewis pair nicely

provided an apparent justification to recently obtained

chemical structure formulas for most single and multiple

molecular bonds; the model theoretical foundations were

strengthened with the discovery of the electron spin, by

assuming anti-parallel spins for the electron pair.

However, the never ending desire for self-consistency in

different fields of science did lead to the need to understand

the ‘‘formation’’ and ‘‘breaking’’ of ‘‘chemical bonds’’ via a

direct utilization and solution of the quantum mechanical

laws, particularly the Schrödinger and Dirac equations.

This implies the need to solve with quantum mechanical

models the equations of motion for the atoms and electrons

in molecules, and as a by-product to determine the stability

(or instability) of certain geometrical configurations

between the atoms in a molecule. The belief of an ‘‘affin-

ity’’ between atoms in a molecule [1–3] is thus replaced

with a quantum mechanical understanding of the dynamics

of the electrons in the atoms constituting a molecule.

The electronic structure of atoms, clearly, were the first

target. In 1928, Fermi [64] and Thomas [65] proposed a

simple electronic density model based on the Poisson

equation to approximate the electronic atomic structure.

The model was improved by Hartree with a product of one

electron functions [69], later extended by Hartree [70, 71],

Slater [4] and Fock [25] with the determinantal wave-

function, yielding the Hartree–Fock model. Shortly there-

after Möller and Plesset [46] used a perturbation approach.

Finally, Dirac [66] proposed a general Hamiltonian

including relativistic effects. The correlation energy error

associated to the Hartree–Fock model was considered by

Hartree et al. [29] for near-degenerate states, by Hylleraas

with an explicit rij dependency in the wave function [72],

by the CI algorithms [37], and with a density functional by

Wigner [10]: a long series of investigations which continue

today.

The impact on molecular theory was nearly simultaneous

to the berth of wave mechanics, thanks to well-recog-

nized pioneers, particularly E. Schrödinger (1887–1961),

F. Heitler (1904–1981), F. London (1900–1954), L. Pauling

(1901–1994), F. Hund (1896–1997), J. C. Slater (1900–

1976), R. S. Mulliken (1896–1986), G. Herzberg (1904–

1999), D. Hartree (1897–1958), W. Pauli (1900–1958),

P. M. Dirac (1902–1984), V. A. Fock (1898–1974), L. H.

Thomas (1903–1992), E. Fermi (1901–1954), E. Wigner

(1902–1995) and others. In the period 1928 to 1935,

these pioneers proposed the first road map for a quantum

theory of the electronic structure of many electron

molecules, but numerical solutions had to wait for the

electronic industry, emerged shortly after the end of the

second world war.

3 Atomic and molecular orbitals and the Coulomb hole

functional

It is well known that, at the beginning of quantum chem-

istry in the early 1930s, two approaches were predominant

in the attempt to explain, with quantum theory, the forces

responsible for holding atoms in a molecule. These were

the Linear combination of atomic orbitals–molecular

orbitals [6, 7] (LCAO–MO), and the Heitler–London [8],

HL, approximations, resulting from two different concepts

embodied in the MO and AO one-particle functions,

respectively.

Quoting Herzberg [9], the building-up principle to

construct molecular wave functions rests on the observa-

tion that ‘‘the number of electronic states in a molecule is

of the same order as for atoms’’. Further, we recall that the

manifold of electronic states in a molecule can be obtained,

as for atoms, by successive bringing together of the parts

(building-up principle). The molecule can be built up

starting at dissociation by bringing together the whole

atoms of which it consists (HL and VB approaches);

alternatively, we may split the united atom (HF approach).

Finally, the individual electrons are added one after the

other to the nuclei, which are assumed fixed, considering in

which orbitals the electrons will arrange themselves. This

leads to Herzberg [9] and Mulliken [73] orbital correlation

diagrams, which make use of both AO and MO one-elec-

tron functions to describe the electronic distribution from

infinite separation to the united atom, subject to the sym-

metry and spin constrains expressed by the Wigner and

Witmer rules [74].

We should point out, however, that in general neither

the HL nor the HF models did fully follow the suggestion

contained in the correlation diagrams, namely a one-elec-

tron function obtained by considering both the AO and the

MO type functions, thus valid from dissociation to the

united atom; in Sect. 11, we return on this forgotten point.

An obvious fault of the HF method is the assumption

that the same orbital function can be used to describe the
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distribution for two electrons, an assumption which reveals

all its inconsistency at dissociation; for the HL method this

problem does not exist since it dissociates correctly. A

second obvious fault, shared by both methods, HF and HL,

is the assumption that two interacting electrons approach-

ing zero inter-electronic distance can be placed ‘‘one on top

of the other’’. Since the early days of quantum chemistry

Hylleraas made clear that this assumption is unphysical;

unfortunately Hylleraas correction algorithm [72] was (and

partly is) rather unpractical. Since the HF method allows

two electrons with anti-parallel spins to come too near one

to the other, the resulting HF repulsion is too large, thus the

total energy is too small by an amount called by Wigner

[10] ‘‘correlation energy’’.

Wigner introduced the idea that around each electron

there is a shield [10] which prevents another electron to

get too close. The shield is stronger for electrons with

parallel spins, since not only the electric charges repel

each other, but there is also the anti-symmetry of the HF

function (Pauli principle). For two electrons with opposite

spin the electric charges repulsion is mitigated by spin

compatibility. Since the shield opposes the electron–

electron approach, its effect is an energy stabilization,

thus it corresponds to an energy hole. The shielding for

electrons with parallel spins is called Fermi hole (the

exchange energy), from anti-parallel spins Coulomb Hole.

Wigner [10] estimated the correlation energy correction

by fitting the free electron model correlation energy with

a functional of the electronic density. Wigner considered

the Coulomb Hole correlation energy as a correction to be

estimated once a density, qm, was available from some

model, for example the HF model. This view was fol-

lowed and extended particularly in pre Second World War

Europe as documented in Gombas volumes [11, 12] and

papers [13, 14]. The general form of Wigner density

functional is

Ec ¼
Z

qmec qmð Þds ð1Þ

where qm is the electronic density from a model m, and the

functional ec(qm) is [11, 13] of the form:

ec qmð Þ ¼ a1q
1=3
m

a2 þ q1=3
m

� �þ b1 ln 1þ b2q
1=3
m

� �
ð2Þ

with a1, a2, b1, and b2 fitting numerical parameters from the

electron gas. This expression is particularly well suited also

for the computation of a fraction of the HF correlation

energy, namely for partially correlated wave functions,

requiring, however, a re-optimization of the parameters

[15, 16, 75, 76].

Since the early 1950s Slater at MIT was interested in

efficient computations of the exchange integrals in solid

state computations [77] and this did lead to the Hartree–

Fock–Slater wave functions (HFS), a very reasonable

approximation to the Hartree–Fock functions; the HFS

was systematically applied to ground state atomic func-

tions by Hermann and Skillman [78] in 1963. We recall

that the status of quantum chemistry from the early days

till 1960 is well represented by the special report on the

Boulder, Colorado, International Conference in 1959

[79].

In the early 1960 Clementi at IBM published a series

of papers with hundreds of RHF wave functions for

atoms and ions [80–83] and molecules, thus demon-

strating that the Roothaan Restricted–Hartree–Fock

method could be systematically adopted in quantum

chemistry. The atomic compilation was eventually con-

densed into ‘‘Atomic Tables’’ [84] and later into the

‘‘Roothaan–Hartree–Fock Atomic Wave Functions’’ [85]

tabulation, for neutral, positive and negative ions from

He to Xe, using minimal, double zeta and extended

Slater-type basis sets. The study with different basis sets

was performed to help the progress of molecular com-

putation, since it was assumed that the many center

integrals with Slater functions would be eventually rou-

tinely available. The tabulation did lead also to the first

systematic tabulation of atomic correlation energies [86–

89] and to perturbation computations of the relativistic

correction [90, 91]. At the same time computations on

small molecules and even of molecular interactions (the

so called super-molecular approach) were vigorously

pursued. Computational chemistry had started!

Clementi’s early correlation energy estimates were

obtained by subtracting the HF energy from the experi-

mental energy and correcting for relativistic effects [90,

91]. A different approach was also implemented, namely a

computational estimate of the correlation energy with a

semi-empirical density functional.

As we all know, the relations between the exact non

relativistic energy and the HF energy are given (consider-

ing for simplicity closed shell structures) by

EHF ¼
X

i

hi þ
X

i

X
j

2Jij � Kij

� �
ð3Þ

and

Eexact ¼
X

i

hi þ
X

i

X
j

2Jij � Kij

� �
þ EC ð4Þ

with both equations obeying the virial theorem. Ec, a

relatively small perturbation, can be represented as a term

by term correction, D, of the HF energy components;

therefore we can write the correlation energy as

EC ¼
X

i

Dhi þ
X

i

X
j

2DJij � DKij

� �
ð5Þ
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and

Eexact ¼
X

i

h�i þ
X

i

X
j

2J�ij � K�ij

� �
ð4bÞ

with h�i ¼ hi þ Dhi; J�ij ¼ Jji þ DJji and K�ij ¼ Kij þ DKij

the correlation corrected energy components. Thus, we

have reached the conclusion that the exact electronic

energy essentially retains the structure of the HF energy

expression and, therefore one simply needs a correction in

the HF algorithm. Physically, since the Coulomb term is

overestimated in the HF model, there is the need of a

correction which—in a self consistent approach—will

bring about corrections primarily in the exchange but also

in the one electron terms.

To decrease the HF Coulomb energy in the HF–SCF

computation one can simply screen the two interacting

electrons, for example replacing 1/r12 with 1/(er12), where e
is a screening parameter. Wigner’s idea of a radius r(i) for

electron i with spin up, delimiting a space region imper-

meable to electron j with spin down, suggest a Coulomb

hole functional [92] to replace the standard Coulomb matrix

elements between electrons i and j. In the computation of

the Coulomb integrals, the integration from 0 to infinity

over the radial coordinates r(i) of electron i and the inte-

gration over the radial coordinates of r(j) for electron j is

modified at r(i) = r(j), where the two electrons are sharply

kept apart in an interval from ra = (r(i) - d/2) to

rb = (r(i) ? d/2), where d is a interval value (distance)

given from a semi-empirical parameter density dependent

[92]. Thus the standard Coulomb interaction matrix element

Z1

0

f ðiÞ
ZrðiÞ

0

f 0 jð Þdr jð Þ þ
Z1

rðiÞ

f 00 jð Þdr jð Þ

2
64

3
75drðiÞ ð6aÞ

is replaced by

Z1

0

f ðiÞ
Zra

0

f 0ðjÞdrðjÞ þ
Z1

rb

f 00ðjÞdrðjÞ

2
4

3
5drðiÞ ð6bÞ

where f(i), f0(j), f00(j) are the standard Coulomb integral

expressions relating the orbital basis set representation for

electrons i and j, respectively [93]. Note that the above

integration over the radial part of the basis set functions

was performed after the integration over the angular part,

thus d was parameterized for specific combinations of s, p,

d, f, …, etc. functions. The above cut off is ‘‘hard’’, thus the

expression in Eq. 6b is designated as the ‘‘hard Coulomb

hole’’. Later the original ‘‘hard Coulomb hole’’ was

modified into ‘‘a soft Coulomb hole’’ [94] by replacing

the Coulomb operator [1/rij] with the operator

1� exp �ar2
ij

� �h i
=rij ð7Þ

The value of a, a semi-empirical density dependent value,

was determined by fitting atomic energies and ionization

potentials for specific combinations of s, p, d, f, …, etc.

atomic functions.

The idea to introduce correlation via modifications of

the HF interactions, e.g. with the Coulomb hole [92, 94] or

with Wigner-type density functionals [10–16, 75, 76], was

preceded by the Slater’s proposal to extend the role of the

HF exchange energy [93]. Clearly the exact non-relativistic

energy can be obtained by modification in the HF algo-

rithm either by decreasing the Coulomb energy (Coulomb

hole approach) or by increasing the Exchange energy;

Slater work eventually leads to the ‘‘xa’’ approximation

[95]. Thus DFA, are recurring ideas from mid-1930s to

mid-1960s based on the assumption of availability of an

HF type function, which can be easily corrected; compu-

tational chemist attention, however, in the 1960s and

1970s, was predominately focused on linear expansions,

either CI or MC–SCF and perturbation methods.

From the 1960 to the 1990 the expression in Eq. 4b has

been often re-parameterized [15, 16, 75, 76] to fit different

requirements, particularly in molecular computations. The

atomic correlation energies obtained from HF functions

compared with experimental data, or using Wigner type

corrections, or the Coulomb hole functionals, were once

more reconsidered by Clementi and Corongiu in 1997 with

a new functional [96] aimed at an estimate of correlated

non relativistic energy for the atoms and ions, ground and

excited states from Z = 2 to Z = 54 (He–Xe). The pro-

gress of computational techniques and the electronic

computer development (since Clementi’s early 1960 HF

computations) allowed eventually for systematic ab initio

computations of relativistic and non-relativistic atomic

energies to ground state atoms and ions from Z = 2 to

Z = 18 [97].

In the early 1960s, to extend the Coulomb hole concept

from atomic to molecular systems it was first of all nec-

essary to have HF functions, thus the need to write a

general HF molecular computer code [98, 99], subse-

quently, several times improved and re-adapted to follow

the computer hardware evolution.

These post HF approximations, from Wigner, to Slater,

to Clementi, denoted the DFA, should not be confused with

the Density Functional Theory (DFT) approximations (see

below). Unfortunately, the notation ‘‘Wigner-type density

functional’’, used by Clementi in the last 40 years has

contributed to the incorrect assumption that DFT is the

only proposal in quantum chemistry using density

functionals.

We recall that the Thomas-Fermi [64, 65] approxima-

tion for atomic systems, was based on the Poisson

equation, and therefore relates energy and density via a

simple functional; the atomic total energy is given by the
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simple relation E = kZ3/7 with k a numeric constant.

Despite its appealing simplicity this approximation was

disregarded in the early development of quantum chemis-

try, due to the opinion that a classically derived relation

could not lead to any molecular binding. In the late 1950s

there was a renewed interest [100] and today we know that

about 50% of the molecular binding can be obtained with

classical considerations without inclusion of the exchange

term [101].

In the mid-1960s, Hohenberg and Kohn published a the-

orem [102] proposing the existence of a unique relation

between exact electronic density and exact wave functions

for non degenerate states (thus a theorem limited to semi-

classical systems), without, however, providing any explicit

algorithm linking density and electronic energy. The Tho-

mas-Fermi model was resumed as starting point in the

proposal by Kohn and Sham [102], and two avenues were

presented. The first one is a typical DFA approach, which re-

proposes concepts published in the Coulomb hole work and

‘‘xa’’ approximations [92–95]; the resulting orbitals are

standard AO or MO orbitals, now called Kohn–Sham orbi-

tals. This approximation was later applied to semi-empirical

molecular computations, the so called Kohn–Sham DFT

approximation, popularized for example by Parr and Yang

volume [54] but mostly by the availability of easy to use

computer codes [104, 105]. We are of the opinion that

‘‘Kohn–Sham DFA’’ rather than ‘‘Kohn–Sham DFT’’ is most

likely the correct label for the approach. The second DFT

avenue [102] proposes the Hohenberg and Kohn theorem as

the base for a new way to obtain exact energies, from exact

densities, constrained, however, by the availability of an

exact exchange expression; till today there is no such exact

exchange. Rather critical for the DFT proposals are the

computations of excited states, since these require vector

coupling coefficients, which, however, are obtained assum-

ing HF wave function. Today there is a wide acceptance of

algorithms brutally mixing fractions of HF and DFT ener-

gies, neglecting the logical contradiction implicit in mixing

energies based on wave function formalism with those based

on Kohn–Sham density formalism.

Parallel to these development based on the variational

method, the introduction of perturbation methods in 1934

by Møller and Plesset [46] opened new avenues, leading

eventually to the Coupled Cluster methods [47, 48] com-

plementing the variational approaches; more recently we

have witnessed a merging of these approaches, for example

the perturbation theory has been utilized in CASSCF

computations yielding the CASPT2 method [36].

However, none of the above methods is adequate to

provide an ab initio computationally efficient solution of

the Schrödinger equation from short internuclear distances

to dissociation. Indeed, it does not surprise that in the

meantime semi-empirical models, ‘‘magic formulae’’ to use

Mulliken expression [106], are very popular among

pragmatic chemists, a consequence of the realization that

quantum chemical computations should provide predic-

tions and explanations in many facets of chemistry not only

for small molecules (2–100 atoms, the classical ab initio

chemistry area) but also for larger molecular systems with

thousands of atoms.

4 HF and HL computations for diatomic molecules

In this section, we report computational results on diatomic

molecules obtained from the HF and the HL methods. We

start by recalling the definitions of WHF and WHL wave

functions using the obvious notation:

WHF ¼ det U1; . . .;Ui; . . .;Unð Þ ð8Þ

WHL ¼ AN u01ð1Þ. . .u0nðnÞHSMð1; 2; . . .; nÞ
� �

ð9aÞ

¼ Rkdet u1k; . . .;uik; . . .;umkð Þ ð9bÞ

Above, /i refers to ith HF molecular spin-orbital, u0i to the

ith atomic orbital and and /lk to the ith atomic spin–orbital

for the kth determinant in the HL function. AN denotes the

anti-symmetry spin operator and the normalization constant,

HSM refer to the spin eigen-functions; note that the HL

functions discussed in our work are constructed to satisfy the

correct spin coupling constrains [107] to ensure correct

dissociation states. We shall use in general the notation of

Eq. 9b.

Diatomic molecules provide the simplest examples of

chemical bond, in addition there is a large body of experi-

mental data on the ground and excited state energies, and

therefore are an optimal testing ground for analyzing the

merits of theoretical and computational proposals to predict

the molecular electronic structure. In this work, we compare

HF and HL computations for the homopolar and the hydrides

molecules of the first and second rows of the periodic table.

In our computations, we have used basis set of gaussian

type, sufficiently large and flexible to ensure the HF and

the HL limit of accuracy and to yield CI energies

approaching exact non relativistic energies. We use the

following basis sets: for the H atom [10,5,4/6,5,4] in the

hydrides and [4, 5, 10] in the H2 and HeH molecules; for

the He atom [2, 5, 8, 9, 14]; for the Li atom [15,10,6,1/

10,8,6,1]; for the Be atom [17,8,6,3/11,8,6,3]; for the B

atom [15,11,7,5/9,8,6,4]; for the C atom [17,13,6,5/

11,8,5,4]; for the N and O atoms [17,13,5,4/9,7,5,4], and

for the F atom [18,13,5,4/12,6,5,4]. These basis sets yield

the Hartree–Fock atomic ground state energies given in last

column of Table 1.

In Table 1, we report molecular data for the homopolar

molecules of the first and second periods: the laboratory

binding energy (kcal/mol), Eb, the laboratory equilibrium

214 Theor Chem Acc (2009) 123:209–235

123



distance (bohr), Re, the total molecular non-relativistic

energy (hartree) at equilibrium, ET(Re), and at dissocia-

tion, ET(R?). In the two last columns of the table we report

atomic data: the ground state Hartree–Fock energy limit,

EHF(limit) and the HF atomic energy (hartree) we have

computed with the above basis set, EHF (this work). The

molecular non-relativistic energies ET(R?) are the care-

fully estimated atomic energies by Chakravorty et al. [97],

and the total non relativistic energies ET(Re) at equilibrium

are obtained by adding Eb to ET(R?). In this notation, Eb

includes the zero point energy.

Table 2 complements the data of Table 1 reporting the

binding energy (kcal/mol) obtained from the HF and HL

computations, Eb(HF) and Eb(HL), respectively and the

corresponding total energies (hartree) ET(HF) and ET(HL)

and the correlation energy Ec(HF) and Ec(HL). The dif-

ferent values for Ec(HF) and Ec(HL) clearly show that the

correlation energy is model dependent.

For the hydrides of the first and second period, Table 3

reports: laboratory binding energies (kcal/mol), Eb, inter-

nuclear equilibrium distances (bohr), Re, exact non

relativistic energies (hartree) at equilibrium, ET(Re) and at

Table 1 Molecular and atomic data for homopolar molecules:

laboratory binding energy (kcal/mol), Eb equilibrium distance (bohr),

Re equilibrium total non-relativistic energy (hartree) ET(Re); same at

dissociation, ET(R?). Atomic ground states: Hartree–Fock atomic

energy at the Hartree–Fock limit, EHF (limit) and computed with the

basis sets of this work, EHF (this work)

Molecule Eb
a Rea -ET[Re] -ET[R?]b -EHF (limit) -EHF (this work)

H2 ½1Rþg � 109.48c 1.40 1.1744757 1.000000 H [2S] 0.500000 0.499999

He2½1Rþg � 0.02d 5.62 5.807483 5.807448 He [1S] 2.861680 2.861679

Li2½1Rþg � 24.67 5.0510 14.99543 14.95612 Li [2S] 7.432727 7.432721

Be2½1Rþg � 2.40e 4.63 29.33860 29.33477 Be [1S] 14.573023 14.573016

B2½3R�g � 68.49f 3.0047 49.41695 49.30780 B [2P] 24.529061 24.529036

C2½1Rþg � 147.85g 2.3480 75.9256 75.6900 C [3P] 37.688619 37.688616

N2½1Rþg � 228.4 2.0743 109.5426 109.1786 N [4S] 54.400934 54.400924

O2½3R�g � 120.6 2.2819 150.3270 150.1348 O [3P] 74.809398 74.809384

F2½1Rþg � 39.0 2.6682 199.5305 199.4683 F[2P] 99.409349 99.409343

Ne2½1Rþg � 0.08h 5.84 257.87673 -257.8766 Ne [1S] 128.547098 128.547052

a Ref. [108], b Ref. [97], c Ref. [109], d Ref. [110], e Ref. [111], f Ref. [112], g Ref. [113], h Ref. [114]

Table 2 Homopolar molecules. Laboratory binding energy (kcal/mol), Eb, and computed HF and HL binding energy Eb(HF) and Eb(HL), total

HF and HL energies (hartree) at equilibrium ET(HF) and ET(HL), HF and HL correlation energies (hartree), EC(HF) and Ec(HL)

Molecule Eb
a Eb (HF) Eb (HL) -ET (HF) -ET (HL) Ec (HF) Ec (HL)

H2 ½1Rþg � 109.48b 83.83 94.28 1.133596 1.150247 0.04087 0.02422

He2 ½1Rþg � 0.02c – – 5.723331 5.723329 0.08415 0.08415

Li2 ½1Rþg � 24.67 3.83 8.68 14.871512 14.879239 0.12389 0.11616

Be2 ½1Rþg � 2.40d –7.54 -19.23 29.133633 29.114666 0.20458 0.12101

B2 ½3R�g � 68.49e 20.53 -15.59 49.090796 49.033188 0.32615 0.20569

C2 ½1Rþg � 147.85f 18.27 -0.92 75.406347 75.375767 0.51925 0.31120

N2 ½1Rþg � 228.4 120.15 121.96 108.993325 108.996199 0.54927 0.54640

O2 ½3R�g � 120.6 30.18 1.51 149.666862 149.621643 0.66014 0.70536

F2 ½1Rþg � 39.0 -29.24 -17.59 198.770522 198.792681 0.75841 0.73942

Ne2 ½1Rþg � 0.08g – – 257.094010 257.094008 0.78272 0.78272

a Ref. [108], b Ref. [109], c Ref. [110], d Ref. [111], e Ref. [112], f Ref. [113], g Ref. [114]
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dissociation ET(?); binding energies (kcal/mol) from HF

and HL, Eb(HF), Eb(HL), and correlation energies (har-

tree), Ec(HF) and Ec(HL).

These tables exemplify the variable reliability of the HF

and HL methods: qualitative agreement for most cases but

also occasional inability to show any binding. The com-

puted binding energies for the diatomic hydrides vary in

accuracy from 60% for the HL model to 70% for the HF,

respectively (the BeH interaction is repulsive by 29 kcal/

mol in HL and it contributes to the percent with a negative

value). For the homopolar diatomic molecules the HF and

HL computations yield 48 and 32% of the experimental

binding, respectively (F2 is repulsive in the HF model and

the same holds for B2 and F2 in the HL model).

Therefore, in a few situations the two classical quantum

chemical models, HF and HL, fail to provide a theory capable

of predicting (even qualitatively) the forces responsible for

holding together atoms in a molecule. It follows that neither

one of the two models can be chosen as a general zero-order

approximation for quantum chemistry, namely a ‘‘reference

function’’ which qualitatively approximates laboratory data

consistently and with comparable accuracy at any inter-

nuclear separation.

Relativistic corrections are neglected for the molecules

we consider in this work, since sufficiently small for the

present binding energy target accuracy. The Born–

Oppenheimer approximation is accepted as a reasonable

approximation.

5 Decomposition of correlation effects

In previous publications [41, 43] we have analyzed in

detail several decompositions of the correlation energy.

The standard Löwdin definition on the correlation energy

[121, 122] relates specifically to the HF method, but, since

we are considering not only the HF model but also the HL

and the HF–HL, we need a more general definition and an

appropriate notation.

In general, the correlation energy, Ec,M, is defined

relatively to a model M, yielding a total energy EM; Ec,M is

defined as the difference between the exact non-relativistic

energy Enr and EM, namely Ec,M = Enr - EM.

In a more general way, the correlation energy for a

system of n electrons can be defined with reference to an

exact expansion into exact one-, two-,…,n-electron ener-

gies, E1, E2,…,En. The approximated solution EM from the

model M (like EHF, or EHL or EHF-HL) compared to E1

brings about an energy difference (E1 - EM) called ‘‘non-

dynamical’’ correlation, Ec,nd,M; by construction Ec,M = Ri

Ei is the ‘‘total’’ correlation energy of the model M. The

difference between Ec,M and Ec,nd,M is, by definition, the

‘‘dynamical’’ correlation energy, Ec,d,M. In conclusion, we

partition Ec,M:

Ec;M ¼ Ec;nd;M þ Ec;d;M ð10Þ

In the following, we drop the subscript M, unless

needed.

Physically, as below explained in more detail, the non-

dynamical correlation can be seen as the result in the model

M of ‘‘obvious errors’’ mainly in writing the electronic

configuration, like for example the incorrect use of only

one specific electronic configuration (if there are several

competing near degenerate configurations) or when the

model constrains two distinct electrons to have the same

space–orbital leading to grossly incorrect dissociation, or

when the wave function neglects to be at a crossing of two

electronic state. It follows that the dynamical correlation

can be considered as the true correlation correction,

resulting mainly from the Coulomb hole effects.

Table 3 Diatomic hydrides: laboratory binding energies (kcal/mol),

Eb, equilibrium internuclear separation Re (bohr), total non-relativ-

istic energies (hartree) at equilibrium ET(Re) and ET(R?) at

dissociation ET(R?), computed binding energies (kcal/mol), Eb(HF)

and Eb(HL), from HF and HL, and corresponding correlation energy

for HF and HL methods

Eb
a Rea - ET (Re) - ET (R?) Eb (HF) Eb (HL) Ec (HF) Ec (HL)

H2 ½1Rþg � 109.48b 1.4b 1.1744757 1.000000 83.84 94.28 0.040872 0.024221

HeH ½2Rþ� 0.01c 7.00 3.4037459 3.4037243 -0.0 -0.0 0.042090 0.042090

LiH ½1Rþ� 58.00 3.0150 8.070491 -7.978062 34.27 43.11 0.083153 0.069076

BeH ½2Rþ� 49.83d 2.5371 15.246772 15.167363 40.2* -29.25 0.093607 0.220307

BH ½1Rþ� 84.1e 2.3289 25.28795 25.15393 63.35 72.18 0.156363 0.143840

CH ½2P� 83.9 2.1163 38.47869 38.34499 57.14 65.82 0.199026 0.185177

NH ½3R�� 80.5f 1.9582 55.21754 55.08925 48.59 57.30 0.239185 0.225298

OH ½2P� 106.6 1.8324 75.73708 75.5672 70.16 72.26 0.315893 o.311645

FH ½1Rþ� 141.5g 1.7325 100.4592 100.2337 101.23 92.17 0.388535 0.400952

a Ref. [108], b Ref. [109], c Ref. [115, 116], d Ref. [117], e Ref. [118], f Ref. [119], g Ref. [120]

* 50.29 kcal/mol, without correction for state crossing (see Ref. [40])
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A second partitioning is used in the HF–HL strategy.

Considering the HL approach, we stress the notion that

molecules are composed of atoms, and in this case the

correlation energy can be broken down into two main

components: one, Raea, is the sum of the correlation cor-

rections, ea, of each individual atom at dissociation and the

second, gM = (Ec,M – Raea), is the ‘‘molecular extra-cor-

relation energy’’, namely the variation in the correlation

due to different electronic coupling of electrons at disso-

ciation and in the molecule. Actually, this definition was

introduced in the early 1960s considering the HF molecule

[123]. This viewpoint (complementary to the one in the

previous paragraph) leads to:

Ec;M ¼ Raea þ gM ð11Þ

The non-dynamical correlation errors in the HF model

are due to (1) neglect of near-degeneracy, (2) the constraint

of doubly orbital occupancy for molecular systems

approaching dissociation, (3) neglect of avoided curve

crossing.

Let us consider near-degeneracy and Ec,nd,M in more

detail. The non-dynamical correlation has been accounted

in atoms by Hartree et al. [29] with a two term MC

expansion for the near-degenerate configurations 1s22s22pn

and 1s22s02pn?2. Later, a different approach not limited to

near-degeneracy and based on perturbation methods, was

proposed by Sinanoglu [124, 125] leading essentially to the

same numerical result obtained by Hartree [29], thus

Hartree near-degeneracy becomes Sinanoglu non-dynami-

cal correlation. Shortly after, following Hartree et al. [29]

Veillard and Clementi [30, 31] computed with Slater-type

functions Ec,nd for the second-row atoms and ions using

a MC expansion of two configurations, the ground

state configuration 1s22s22pn and its near-degenerate

1s22s02pn?2.

Note that above we have considered configurations

differing in the quantum number l but with the same

quantum number n; we, therefore, talk of nl ? nl0 near-

degeneracy. In this work, we extend the near-degeneracy

concept from nl ? nl0 to nl ? n0l 0 near energy excita-

tions, generally with the constraint n0 = n ? 1 (or an

integer near to n). Examples are 1s1 ? 2s1 or 1s1 ? 2p1

for molecules with an H atom, or equivalent excitation of

valence electrons, like 2p ? 3 s for the neon atom, as first

demonstrated by Bagus et al. [126]. In the same spirit we

can include molecular excitations r ? p, nrg ? nru and

npu ? npg as ‘‘nearly degenerate’’ configurations.

Concerning the constraint of doubly orbital occupancy,

we recall that the HF model approaching dissociation leads

to grossly incorrect energies. The use of the unrestricted

HF algorithm avoids this catastrophic behavior, but the

resulting wave function is incorrect. An alternative, pro-

posed by Lie et al. [15, 16] is to determine a short MC

function, ensuring correct dissociation, thus gaining most

of the non dynamical correlation energy. This approach

marks the first computation in quantum chemistry using

density functionals—in the DFA spirit—to correct MC

rather than HF functions.

A third source of non-dynamical correlation is related to

the degeneracy at the crossing of states with the same

symmetry—a situation very common in excited states, but

also frequently present in ground states [9]. Note that since

at the crossing of two or more interacting states there is

exact degeneracy, curve crossing can be considered as a

special type of near-degeneracy.

In the HL approximation, the non-dynamical correlation

error is due (1) to the neglect of near-degeneracy, (2) to the

constrained selection of the lowest atomic states at disso-

ciation, and (3) to the neglect of avoided state crossing.

We now summarize the model dependent partitioning of

the correlation energy. We have partitioned the total

molecular correlation energy EC into the sum of Raea and

gM; further recalling the partitioning into dynamical and

non-dynamical component we write:

Ec;M ¼ Ra ea;M;d þ ea;M;nd

� �
þ gM;d þ gM;nd ð12Þ

Since the correlation errors are model dependent, we

distinguish the correlation correction in the HF, HL and

HF–HL models and we write:

Ec:HF ¼ Raea;HF;nd þ Raea;HF;d þ gHF;nd þ gHF;d ð13aÞ

Ec;HL ¼ Raea;HL;nd þ Raea;HL;d þ gHL;nd þ gHL;d ð13bÞ

Ec;HF�HL ¼ Raea;HF�HL;d þ gM;HF�HL;d ð13cÞ

Equation 13c results from the realization (see next

section) that sum Raea,nd ? gM,nd is accounted by

construction in the HF–HL method. Equation 13c is the

basic equation in the HF–HL model: gM,HF-HL,d is

computed ab initio with a relatively few term expansion,

and Raea,d is closely approximated with a simplified form

of the Coulomb hole functional (mainly a scaling of the

molecular energy to ensure correct non relativistic atomic

energies).

We add a short comment on notation. Above we have

introduced definitions and a specific notation for the HF–

HL method. We indicate as MCHF and MCHL multi-con-

figuration expansions of HF and HL type functions,

respectively. When needed, we use the specific notation

HF(n), HL(m) and HF–HL(n, m) to designate MCHF

expansions of n configurations, MCHL expansions of m

configurations, and HF–HL functions composed with

HF(n) and HL(m) configurations. The energies EHF(n),

EHL(m) and EHF-HL(n,m) correspond to the wave functions

WHF(n), WHL(m) and WHF-HL(n,m), respectively. Equivalent

notation is used for the computed binding energies, Eb, and

the correlation energies, Ec.
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6 The HF–HL model

The HF–HL method (1) accounts by construction for the

non dynamical correlation energy resulting from the HF

incorrect dissociation, thus provides the correct dissocia-

tion, (2) solves ab initio for the HF–HL molecular extra

correlation energy, gM,HF–HL,d of Eq 13c, (3) accounts via a

density functional for the dynamical correlation of the

components atoms, Raea, HF–HL,d of Eq. 13c.

Formally, we start with the WHF and the WHL functions,

previously given in Eq. 8 and 9. The HF–HL wave function

WHF–HL is obtained by determining variationally the linear

combination

WHF�HL ¼ c1WHF þ c2WHL ð14Þ

When at dissociation the atoms in the molecule are in a

state with near-degeneracy (e.g., nl ? nl0 and/or when

there is avoided crossing, then WHF and WHL are replaced

with short MC expansions, accounting for near-degeneracy

and avoided crossing:

RtatWHF tð Þ ¼ Rtat det U1; . . .;Ui; . . .;Unð Þt
� �

ð15aÞ

RpbpWHL spð Þ ¼RpbpRk det u1k; . . .;uik; . . .;umkð Þ½ �p ð15bÞ

where the at and bp are the weights of the expansions. The

corresponding HF–HL wave function, WHF-HL, is obtained

by determining variationally the linear combination

WHF�HL ¼ RtatWHF tð Þ þ RpbpWHL pð Þ ð16Þ

In the HL component all spin couplings are considered

[107] and therefore the function dissociates into atoms in

the correct state.

In Eq. 16 the at and bp coefficients are obtained varia-

tionally by solving the equation

H� SEð ÞC ¼ 0 ð17Þ

with H and S the interaction super-matrices containing the

Hamiltonian and the overlap matrix elements, respectively.

The /i orbitals of WHF are linear combination of a basis set

either of gaussian or Slater type functions and the same basis

set is also used to expand the orbital ulk of the WHL

component. We recall that the /i orbitals form an orthogonal

set, whereas the ulk orbitals are generally non-orthogonal. In

the latter case, following a general method proposed by

Löwdin [121] and later reinterpreted by Slater [127], the

interaction between two determinants, da and db, is given by:

dajHjdbh i ¼
X

ij

hijS
ði;jÞ þ

X
i;l\k;j

l½hijjkli � hiljkjh i�Sði;k;j;lÞ

ð18Þ

where the indices i and k refer to the occupied orbitals of da

and j and l to those of db; S(i,j) and S(i,k,j,l) are the first and

second order cofactors of the overlap matrix S, constructed

with the occupied orbitals of da and db. The bi-orthogonal

transformation is an effective way to compute the cofactors

[128], but matrix element evaluation is computationally

demanding. Therefore, a number of simplifying techniques

have been proposed [129, 130]. For example, Leasure et al.

[131] combined determinant properties and the bi-ortho-

gonal transformation to produce an efficient evaluation of

all the matrix elements, thus reducing the complexity of the

original Löwdin formulation.

In our approach, we first define the chosen HF config-

urations and HL structures expanded with a unique basis

set of N basis functions. Next, we apply an integral trans-

formation from the basis set integral list, to molecular and

atomic orbitals and relative cross terms between molecular

and atomic functions. With algorithms reported in VB lit-

erature [23], the matrix elements hda|H|dbi are then

computed for the interactions of HF with HF functions, of

HL with HL structures, and of HF with HL structures. We

then solve by diagonalization Eq. 17. To optimize the

orbital expansion coefficients, we currently use a numerical

algorithm based on the Newton–Raphson procedure. The

present computer code is still in development [132].

In the implementation of the HF–HL method we pro-

ceed by successive steps. In the first step (referred to as

‘‘the simple HF–HL’’) we variationally combine standard

WHF and WHL functions (see Eq. 14); the corresponding

energy is EHF–HL (1, 1). For example the binding energy of

the F2 ground state, computed in the HF and HL methods

as repulsive interactions (29.24 and 17.59 kcal/mol,

respectively) becomes attractive using Eq. 14 with a

computed binding of 11.46 kcal/mol.

When there is near degeneracy and/or state crossing,

then we add the corresponding degenerate and /or crossing

configurations, yielding Eq. 16.

Since neglect of degeneracy and state crossing are

‘‘obvious errors’’, Eqs. 19 and 20 constitute the ‘‘simple

HF–HL’’ model.

For example, let us consider the ground state 1Rþg of C2;

recalling that a C[3P] corresponds to a manifold of near-

degenerate atomic configurations (specifically, 1s22s22p2,

1s22s12p3, and 1s22s02p4) and recalling also the Wigner–

Witmer rules [74] (to obtain a 1Rþg ; we can combine the 3P,
1D and 1S states of the two carbon atoms) we realize that there

are many near degenerate configurations representing C2

½1Rþg �: The computed binding energies from the HF, HL

models and from HF–HL with Eq. 14 are 18.27, –0.92, and

41.90 kcal/mol respectively; computation from HF–HL with

Eq. 16 brings the binding to 127.10 kcal/mol, not far from the

experimental value of 147.85 kcal/mole. We stress that for

carbon chemistry the near degeneracy is a factor of para-

mount importance in determining stability; in Sect. 9 we shall

see in addition that the near-degeneracy is very important also

for the correct determination of excited state energies.
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In a following step, we add to RpbpWHL(p) of Eq. 16 a

number of ionic structures designated RibiWHL (1): this

yields the ‘‘HF–HL ionic mode’’ designated ‘‘HF–HL–i’’:

WHF�HL�i¼RtatWHF tð ÞþRpbpWHL pð ÞþRibiWHL ið Þ ð19Þ

where the coefficients at, bp and bi are obtained as above

explained; the corresponding energy is EHF–HL–i. Note that

generally we use few WHF(t) terms (often only one), since

more and more redundant by the presence of the WHL(p)

and WHL(i) expansions. To illustrate Eq. 19 we consider as

examples the binding energies in F2 and C2: the computed

HF–HL–i binding energies are 37.43, and 147.35 kcal/mol,

respectively, an indication that consideration of ionic

structures is essential to obtain realistic binding energies.

In general, we include the nl ? nl0 near degenerate

configurations (structures) at the early stage of the com-

putation, and nl ? n0l0 near excitations at the end of the

computation, after solving for Eq. 19; further we can

re-optimize WHF in Eq. 19 in the field of other components

of WHF–HL–i. In this paper, we indicate the inclusion of

nl ? n0l0 near energy excitations and, eventually, the

re-optimization of WHF with the notation W�HF�HL�i: This

extension allows inclusion of promotions to orbitals with

different symmetry, an essential step to obtain accurate

binding energies. The Eq. 20, namely inclusion of selected

excited MC–HF (designated W�HF) and MC-HL (designated

W�HL) non orthogonal configurations, represents a final

refinement in the computation of the binding energy:

W�HF�HL�i¼RrarW
�
HF rð ÞþRsbsW

�
HL sð ÞþRibiWHL ið Þ ð20Þ

To illustrate Eq. 20 we consider the water molecule; the

computed HF, HL, HF–HL–i binding energies are 161.84,

166.04, and 208.43 kcal/mol, respectively; after inclusion of

three additional configurations of nl ? n0l0 type on the

hydrogen atom (leading to a total of 1,522 determinants for

the W�HF�HL�i function) the binding energy increases to

227.69 kcal/mol, to be compared to the experimental

atomization energy [133] of 232.77 ± 0.24. We are now in

the process of adding nl ? n0l0 type configurations to the

oxygen atom. (Note that Ref. [133] reports a Full CI/cc-

pVTZ basis set computation requiring 1.7 x 109

determinants and yielding a binding energy of 216.29 kcal/

mol.) As a second example we consider the hydride OH;

addition of H atomic configurations with a 2 s orbital brings

about a binding energy increase from 98.11 kcal/mol—the

HF–HL–i result—to 106.9 kcal/mol, the latter to be

compared with a recommended experimental value [133]

of 107.1 kcal/mol. As third example, we consider a

computation on F2 with an HF–HL–i binding of

36.12 kcal/mol increases to 38.71 kcal/mol with the

addition of one nl ? n0l0 configuration, not far from the

experimental value [108] of 39.0 kcal/mol.

At this stage the binding energy is accounted for and to

obtain the total correlation correction we must account only

for the dynamical correlation of the atomic components,

Raea,HF-HL,d. This is accomplished for example by the use

of the Coulomb hole DFA, described in Sect. 3, which

simply corresponds to a total energy shift (scaling);

computational results are given in the following section.

In Table 4 we list the number of determinants used in

Eqs. 14, 16 and 19 for the homopolar and hydride diatomic

molecules we have considered in this work. The reported

expansion length is notably shorter than that needed in CI

or CASSCF wave function computations, with the same

basis set and equivalent active space. We have not deter-

mined a general scaling rule on the number of determinants

for a given number of active electrons, due to the com-

plication generated by the inclusion of near-degeneracy.

However it is clear that the scaling increases rapidly with

the number of binding electrons, unless the spin functions

Table 4 Number of

determinants in simple HF–HL

computations using Eq. 14

(without near-degeneracy), or

from Eq. 16 (with near-

degeneracy), or from Eq. 19

(HF–HL–i model)

Molecule Equation

14

Equation

16

Equation

19

Molecule Equation

14

Equation

16

Equation

19

H2 ½1Rþg � 3 – 5 LiH ½1Rþ� 3 – 5

Li2 ½1Rþg � 3 – 5 BeH ½2Rþ� 2 8 10

Be2½1Rþg � 3 133 436 BH ½1Rþ� 3 13 15

B2 ½3R�g � 3 511 527 CH ½2P� 6 21 31

C2 ½1Rþg � 13 535 781 NH ½3R�� 10 – 39

C2 ½3Pu� 18 565 – OH ½2P� 6 – 8

C2 ½3R�g � 18 565 – HF ½1Rþ� 3 – 8

N2 ½1Rþg � 91 – 183 CO ½1Rþ� 30 302 758

O2 ½3R�g � 25 – 39 H2O* [1A] 39 – 104

F2 ½1Rþg � 3 – 9 BF ½1Rþ� 3 12 46
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are limited to specific bonds. Algorithms based on disso-

ciation into groups of atoms (fragments) rather than into

the component atoms might offer a solution.

In Fig. 1 we plot the electronic functions, W(0., 0., z1; 0.,

0., z2), for H2 computed at the internuclear separation of 1.4

bohr, obtained from the HF, HL and HF–HL models (left

inset) and for the HF–HL model at seven different internu-

clear separations, from 2.0 to 0.8 bohr (right inset). Note that

we include in the figure also the representation from a new

wave function, designated WCO, described in Sects. 10–12.

In the insets we indicate with an empty dot the inter-

nuclear midpoint separation, with full dots the nuclear

positions for nucleus A at z = -0.70 and nucleus B at

z = 0.7. Electron 1 is fixed at the midpoint on the inter-

nuclear axis of the molecule, z1 = 0.0. The function for

electron 2 is plotted from z2 = -3.0 to z2 = 3.0 bohr. The

left inset shows that the electronic function is symmetrical

for the familiar HF function, with the two maxima in

correspondence of the nuclei A and B. For the HL function

the plot shows the familiar maximum in correspondence of

one of the nuclei, A. For the HF–HL function the plot is

similar to that of the HL function from large (negative)

distances to the nuclear position A, but it has a secondary

maximum in correspondence of the nucleus B, due to the

HF component in the HF–HL function (recall that for H2 at

the equilibrium position, the HL function is more important

than the HF function). As we shall discuss later in Sect. 10,

where we outline the WCO method, the secondary maxi-

mum is more developed in WCO relative to WHF–HL, and it

increases by reducing the internuclear separation from 2.0

to 0.8 bohr with a progressive shift toward the midpoint of

the bond reaching a maximum at the united atom.

In conclusion, in this section we have outlined a new

method, the HF–HL, as an ab initio technique in molecular

wave function computations: we have merged traditional

LCAO–MO (in the HF form) and AO–VB (in the HL form)

and accounted for the molecular extra correlation correc-

tion (to obtain correct binding energies) with relatively

short expansions based on physical concepts (degeneracy

and ionic structures). Alternatively stated, our approach

represents a conclusion of an historical path initiated in the

1930. Below, we shall test the new method by systemati-

cally computing the potential energy of first and second

period diatomic hydrides and homopolar molecules

(ground state and a few excited states).

Note that most of the computational techniques today

available stress the ‘‘user friendliness’’ and the computa-

tional speed; in our method we have attempted to focus on

physical effects and criteria for building the wave function.

7 HF–HL computations for homopolar and hydride

diatomic molecules

The diatomic molecules previously considered with the HF

and HL approximation (see Sect. 4; Tables 1, 2, 3) have

been computed once more with the HF–HL method [39–

43] yielding the data reported in the Tables 5, 6, 7 and 8.

The corresponding potential energy curves are reported in

detail in Refs [42] and [43]; note that the computed binding

energy is obtained comparing the energy at equilibrium

with the energy computed at very large internuclear sepa-

rations (30–40 bohr), and not by summing total atomic

energies obtained from different models, as it is customary

in most computational chemistry papers.

For the hydride molecules we report in Table 5 the

binding energy computed with the HF–HL model of Eqs. 14

and/or 16 indicated as the Eb(HF–HL) and the Eb(HF–HL–i)

energies from Eq. 19, respectively, namely without and with

addition of ionic structures. For Eb(HF–HL–i) we report

also the total energies at equilibrium and at dissociation,

E(HF–HL–i)Re and E(HF–HL-i)?, respectively.

Fig. 1 Wave function for the H2 molecule Left from WHF, WHL, WHF–HL and W CO models at equilibrium separation (see text). Right WHF–HL

function for different internuclear separations, starting at R = 2.0 bohr and decreased by 0.2 to the value R = 0.8 bohr
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Table 5 Diatomic hydrides:

computed binding energies

(kcal/mol), Eb(HF–HL), Eb(HF–

HL–i), and total energies

(hartree) at equilibrium, E(HF–

HL–i)Re, and at dissociation,

E(HF–HL–i)R?

a H2 the HF*–HF–HL–i yields

108.56 kcal/mol
b OH the HF*–HF–HL–i yields

106.9 kcal/mol

Molecule Eb (HF–HL) Eb (HF–HL–i) E (HF–HL–i)Re E (HF–HL–i)R?

H2 ½1Rþg �
a 94.50 95.42a –1.15207 –1.00000

HeH ½2Rþ� –0.0 0.17 –3.37826 –3.37799

LiH ½1Rþ� 43.66 46.59 –8.00699 –7.93274

BeH ½2Rþ� 40.50 45.73 –15.18961 –15.11673

BH ½1Rþ� 77.78 78.10 –25.18831 –25.06384

CH ½2P� 70.03 78.39 –38.33102 –38.20610

NH ½3R�� 60.29 71.50 –55.01548 –54.90153

OH ½2Pb� 79.62 98.11b –75.46883 –75.31028

HF ½1Rþ� 108.36 136.12 –100.12830 –99.91136

Table 6 Homopolar molecules. Binding energy (kcal/mol) from simple HF–HL without near-degeneracy, from HF–HL–i and HF*–HL–i and

correlation energy (hartree) at equilibrium for HF, HL, and HF–HL–i

Molecule Eb (HF–HL)

Eq.14

Eb (HF–HL)

Eq. 16

Eb (HF–HL–i)

Eq. 19

Eb (HF*–HL–i)

Eq. 20

Ec (HF) Ec (HL) Ec (HF–HL–i)

H2 ½1Rþg � 94.50 94.50 95.42 108.56 0.04067 0.02422 0.02387

Li2 ½1Rþg � 8.69 8.69 25.48 25.70 0.12389 0.11616 0.08939

Be2 ½1Rþg � –7.53 –9.49 0.50 0.52 0.20458 0.12101 0.10433

B2 ½3R�g � 23.05 55.01 62.95 63.77 0.32615 0.20569 0.19303

C2 ½1Rþg � 41.90 127.10 138.40 143.86 0.51925 0.31120 0.29298

N2 ½1Rþg � 159.96 175.04 213.16 220.03 0.54927 0.54640 0.40106

O2 ½3R�g � 62.26 76.56 110.12 115.02 0.66014 0.70536 0.65350

F2 ½1Rþg � 11.46 11.46 35.70 38.71 0.75841 0.73942 0.65350

Table 7 Homopolar molecules.

Computations with Coulomb

hole functional: binding (kcal/

mol), Eb(HF–HL)Ch, total

(hartree), Et(HF–HL)Ch–Re,

Et(HF–HL)Ch–R?, errors for

binding, total energy, DEb (kcal/

mol) and DEt? (mhartree), and

computed equilibrium distance

(bohr), Re

Molecule Eb(HF–HL)Ch –Et(HF–HL)Ch–Re –Et(HF–HL)Ch–R? DEb DEt? Re

H2 ½1Rþg � 109.48 1.17448 1.00000 0.00 0.00 1.40

He2 ½1Rþg � 0.02 5.807470 5.807436 0.00 0.00 6.25

Li2 ½1Rþg � 22.95 14.99253 14.95596 –1.74 –0.02 5.111

Be2 ½1Rþg � 2.09 29.33761 29.33427 –0.31 –0.05 4.167

B2 ½3R�g � 66.41 49.41007 49.30423 –2.11 –3.57 3.025

C2 ½1Rþg � 147.44 75.92379 75.68883 –0.41 –1.17 2.348

N2 ½1Rþg � 227.83 109.54025 109.17717 –1.11 –1.43 2.041

O2 ½3R�g � 116.91 150.32046 150.13415 –3.72 –0.65 2.191

F2 ½1Rþg � 39.86 199.53180 199.46827 0.86 –0.07 2.603

Ne2 ½1Rþg � 0.08 257.875856 257.875723 0.00 –0.88 6.40
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In Table 6, we report for the homonuclear molecules

binding energies from the HF–HL models of Eq. 14,

Eb(HF–HL), Eq. 16, Eb(HF–HL), Eq. 19, Eb(HF–HL–i),

and Eq. 20, Eb(HF*–HL-i). The last three columns of

Table 6 report the correlation energy not accounted in the

HF, HL and HF–HL–i computations.

Comparing the values of the computed binding energies

obtained from the HF, HL with those from HF–HL to HF–

HL–i to HF*–HL–i, the improvement is evident: this is

graphically reported in Fig. 2, where the computed bind-

ings are plotted for the homopolar molecules and for the

hydrides.

The HF–HL method—in the implementation of Eq. 14

and, when applicable of Eq. 16 accounts for the non-

dynamical correlation energy (near-degeneracy and expli-

cit consideration of avoided crossing). With this simple

HF–HL model without ionic structures, we have obtained

in average 80% of the experimental binding energy for the

hydrides, to be compared with 60 and 70% from HL and

HF computations, respectively; for the homopolar diatomic

molecules we obtain 66% of the experimental binding,

compared to 48 and 32% from HF and HL computations.

From Tables 5 and 6 and from Fig. 2 it is evident the

importance of including ionic structures in the HL com-

ponent. In Refs. [42] and [43] we provide in detail the

electronic configurations of the HF and HL functions

needed in the HF–HL–i computations.

Note that the so called ‘‘ionic structures’’ raise the

physical interpretation problem pointed out since the 1931

paper by Majorana [136]: charge transfer via ionic struc-

tures has no place in homopolar molecule, even if ionic

structures are an efficient way to introduce ‘‘in–out’’ cor-

relation. Majorana used the designation ‘‘pseudo-polar’’ to

underline the logical difficulty; we shall continue with the

use of the term ‘‘ionic structure’’, following the VB tradi-

tion. In Sect. 10, we shall show that ionic structures are

simply the outcome of a decomposition of a new and more

general wave function, WCO, constructed with CO.

From the HF–HL model computations on the hydrides

and homopolar molecules [39–44], we have learned how to

Table 8 Hydride molecules.

Coulomb hole computed

binding energy (kcal/mol),

Eb(HF–HL)–Ch, total energy

(hartree) at equilibrium, E(HF–

HL)–Ch(Re), and at

dissociation, E(HF–HL)–

Ch(R?), deviation, DE, (kcal/

mol) of the latter from exact

non-relativistic energies,

computed equilibrium

separation in bohr, Re–Ch

Molecule Eb(HF-HL)– Ch –E(HF–HL)–Ch(Re) –E(HF–HL)–Ch(R?) DE Re–Ch

H2 ½1Rþg � 109.48 1.17447 1.00000 0.00 1.40

LiH ½1Rþ� 59.22 8.07236 7.97798 0.05 3.01

BeH ½2Rþ� 49.55 15.24611 15.16716 0.13 2.59

BH ½1Rþ� 86.77 25.29208 25.15382 0.07 2.33

CH ½2P� 82.65 38.47601 38.34429 0.44 2.11

NH ½3R�� 81.57 55.21857 55.08846 0.50 1.93

OH ½2P� 107.18 75.73765 75.56685 0.22 1.80

HF ½1Rþ� 140.91 100.45867 100.23412 -0.26 1.68

Fig. 2 Binding energy (kcal/mol): values from experiments (Exp) and from HF–HL–i, HF–HL, and HF computations. Left for homopolar

molecules. Right for hydride molecules
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refine the computation of the binding energy, ensuring

errors of less than one kcal/mol. As noted, an improvement

comes about by considering not only nl ? nl0 near

degeneracy, but also the nl ? n0l0 type excitations.

Second, there is another rather obvious potential

improvement which is associated with the use of a larger

number of polarization functions in the basis set. Indeed

since long ago it is well known that very accurate atomic

[134] and molecular [135] computations need functions of

high angular momentum, not only 4f but also, 5 g, 6 h and

7i (at the cost of a non trivial increase in computer time).

8 Computation of the atomic dynamical correlation

energy, Raea,d

Once the HF–HL wave-function is obtained by solving for

Eqs. 16 and 19 the largest remaining correlation error is

Raea,d (see Eq. 13c). Since ea,d is a simple and regular

function of the atomic number Z, the computational task is

not as complex as in DFT computations, and it can be

accomplished using the Soft Coulomb hole, Ch, DFA [92,

137, 138].

The computed binding energies, using the Coulomb hole

functional are displayed in Fig. 3 and collected in Tables 7

and 8. Let us consider first the homopolar molecules. Table 7

reports the computed binding energy at equilibrium, Eb(HF–

HL)–Ch, the total energy at equilibrium, ET(HF–HL)–Ch–

Re, and dissociation, ET(HF–HL)–Ch–R?, the error in the

computed binding energy, DEb, and in the total energy at

dissociation, DEt?, relative to accurate non relativistic val-

ues (see Table 1), and the equilibrium distance, Re. The data

from the computed binding energy either from Eb(HF–HL–i)

or from Eb(HF–HL)–Ch shows that the computational

technique we have proposed yields reliable values. There are

deviations from experiments, particularly for Be2 and O2, but

the overall resulting trend is satisfactory.

To complete the tabulation for the homopolar molecules

we add very preliminary computations for He2 and Ne2, the

(HF–HL) (1,1) total energies (in hartree) at the experi-

mental equilibrium separation and at dissociation are

-5.723331 and -5.723359 for He2 and -257.094010 and

-257.094104 for Ne2. The computations with HF–HL–Ch

(see Table 7) show a minimum, but at larger internuclear

separation then experimentally observed.

Let us now consider the hydrides. The data obtained

with the DFA Coulomb hole are given in Table 8 and in

Refs. [42] and [44]. In Table 8 we report the binding

energy, Eb(HF–HL)–Ch, the total energy at equilibrium,

E(HF–HL)–Ch(Re), and at dissociation, E(HF–HL)–

Ch(R?), the deviation, DE(?), between the latter values

and exact non-relativistic energies, and the computed

equilibrium distance, Re. The deviations DE show that the

Ch parameterization is reliable.

The data reported in the Tables allow to rationalize the

variation of the binding energy molecule to molecule.

Regularity in the correlation energy trends related to trends

in the binding energy are discussed elsewhere [42, 44].

Presently, we are extending our work to include other

diatomic molecules and also polyatomic molecules. For the

molecule of water we are considering the process

OH ? H ? H2O, and for acetylene the process CH2 ?

CH2 ? C2H2 (work in progress).

Concerning the computed binding energies at dissoci-

ation we recall that, due to the molecular symmetry, the

2p electrons are split into 2pr different from 2pp; for the

Fig. 3 Binding energy (kcal/mol): values from experiments (Exp.) and from HF–HL–Ch, HF–HL, and HF computations. Left for homopolar

molecules. Right for hydride molecules
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separated atom (in spherical symmetry) there is no such

splitting. This causes some correlation energy gain (due to

the use of different orbitals for different spins) in the

molecule but not in the separated atoms. The energy gain

is not negligible and for example amounts to *2.5 kcal/

mol in F2. The molecular energy at a very large distance

(considered ‘‘dissociation distance’’) matches the sum of

the separated atoms by constraining the basis set coeffi-

cients of the 2pr orbitals to be degenerate to those of the

2pp orbitals [43, 44] at large R values; the imposed

constraint notably improves the energy matching of the

linear molecular symmetry with the atomic spherical

symmetry computations (compare the data at dissociation

in Table 7 with the equivalent data in Table 1). The

corresponding potential energy curves are given in Refs.

[42] and [43].

To conclude this section, we note that the choice of the

Coulomb hole algorithm is not unique and several different

functionals [75] can be used. For example, we recall the

extensive computations by Lie et al. for diatomic hydrides

[16] and homopolar [17] molecules, where a Wigner type

density functional is applied to a specific MC expansion

(computed to correct the HF deficiency at dissociation),

yielding reasonable binding and total energies. A study by

Wang and Schwarz [139] supports these findings with

formal considerations. We recall in addition that Colle and

Salvetti extended the applicability of their functional [140]

from HF to MC functions [141].

In Fig. 4, we report computations of the correlation

correction for the HF–HL model with functionals different

from the Coulomb hole functional. As examples, we

compare the HF–HL computations of Eq. 14 with the

Colle-Salvetti [140], CS, and the LYP [142] functionals

(derived from the Colle-Salvetti) and with the very popular

B3LYP [143] functional. In Fig. 4 we consider the F2 and

HF ground state molecules.

9 Excited states

Excited states are well represented by the HF–HL model,

and below we provide examples for the C2 and the LiH

molecules. The computed potential energy curves are given

in Figs. 5 and 6, and the data summarized in Table 9.

For C2, we have considered the 3Gu and 3R�g excited

states reported in Fig. 5. Experimentally, [108, 113] the

lowest state is the1Rþg , followed by the 3Gu with an exci-

tation energy of 0.1 eV and then by the 3R�g with an

excitation energy of 0.96 eV . The HF–HL binding energy

of the1Rþg , 3Gu and 3R�g states, without inclusion of near

degeneracy, is 41.90, 83.72 and 100.61 kcal/mol, respec-

tively, to be compared to the HF values of 18.27, 72.94 and

87.34 kcal/mol and to the experimental values [108, 113]

of 147.85, 143.51 and 126.91 kcal/mol. The HF–HL total

energies are -75.44406, -75.51065 and -75.53767 har-

tree for the three states 1Rþg ;
3Gu and 3R�g ; respectively.

Note the incorrect HF and HF–HL trends in the energies

at these computational levels; both predict a 3R�g ground

state, followed by 3Gu and then by 1Rþg : Inclusion of near

degeneracy in the HL wave function improves the binding

energies to 127.10, 124.06 and 107.30 kcal/mol with total

energies of -75.61460, -75.60967 and -75.58305 hartree

for the three states 1Rþg , 3Gu and 3R�g , respectively, leading

to a correct order of the excitation energies, 0.13 and

0.86 eV for the 3Gu and 3R�g , respectively (the 0.13 eV

value improves previous MC–HF computational results

discussed elsewhere [43]). The HF–HL–ch computations

bring the above binding energies to 147.44, 145.29, and

127.64 kcal/mol for the three states 1Rþg , 3Gu and 3R�g ,

respectively (see in Table 9 the column Eb(C – h).

In Fig. 5, left inset, we display the three states without

and with inclusion of near-degeneracy. Inclusion of

degeneracy leads to the very reasonable result reported in

Table 9; with the Coulomb hole functional correction

Fig. 4 F2 and HF ground states. Coulomb Hole functional, compared to Colle–Salvetti, CS, LYP and B3LYP, restricted and unrestricted for F2
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(right inset of Fig. 5) we obtain good total energies and the

excitation energies remain reasonable, as reported in

Table 9. Recalling the importance of near degeneracy in

the CH study [42] and considering the data from Fig. 5 and

Table 9, we conclude that carbon chemistry is notably

influenced by near-degeneracy. The near-degeneracy is

important not only for the C2 molecule but also for Be2 and

B2.

Let us now summarize the excited state computation for

LiH. The LiH[X1R?] ground state dissociates into Li[2S]

and H[2S] and the [A1R?] excited state dissociates into in

Li[2P] and H[2S]. The LiH[X1R?] and the [A1R?] potential

energy curves are reported in the two insets of Fig. 6. The

computed curves for the HF, HL and HF–HL(1,1) (desig-

nated as ‘‘HF–HL first step’’ in the right inset) show at the

equilibrium distance molecular binding energies of 34.27,

43.11 and 43.66 kcal/mol, with total molecular energies of

-7.98734, -8.00142 and -8.00230 hartree, respectively.

A four configuration optimized MC–HL function (three r
and one p) yields a binding energy of 55.25 kcal/mol;

adding the HF component we obtain an HF–HL function

with a binding of 57.32 kcal/mol (to be compared with the

Fig. 5 Potential energy for the three lowest states of C2. Left
computations from HF-HL without (top three curves) and with near-

degeneracy (bottom three curves). Right computations from HF-HL

with near-degeneracy and HF–HL–Ch; bullets for the exact non-

relativistic energy at equilibrium and dissociation

Fig. 6 Potential energies for LiH molecule: in the left inset the LiH[X1R?] ground state; in the right inset the LiH[X1R?] and LiH[A1R?] states

(see text). First, second and third step are Eqs. 14, 16, and 20, respectively

Table 9 Ground and excited state binding energies (kcal/mol) in

LiH, and C2. The energies are from experiments, from HF, from HF–

HL Eq. 14, from HF–HL Eq. 16 and from coulomb hole approxi-

mation Eb(C–h)

Case State Eb(exp) Eb(HF) Eb(14) Eb(16) Eb(C–h)

LiH (X) 1Rþ 58.00 34.27 43.66 57.32 57.68

(A) 1Rþ 24.82 – – – 24.10

C2
1Rþg 147.45 18.27 41.90 127.10 147.44
3Pu 143.57 72.94 83.72 124.06 145.29
3R�g 125.91 87.34 100.61 107.30 127.64
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experimental value of 58.00 kcal/mol) and a total energy

of -8.02407 hartree at equilibrium (-7.93272 hartree at

dissociation, see in Fig. 6 the curve designated HF–

HL(1,4) in the left inset, and designated ‘‘HF–HL second

step’’ in the right inset).

A successive computation for partial inner shell corre-

lation, discussed in Ref. [43], yields a binding of

56.83 kcal/mol. The HF–HL–Ch computation yielding a

binding energy of 59.22 kcal/mol.

From the MC–HL expansion we obtain also the first

excited state curve, given in the right inset of Fig. 6. The

computed binding and total energies are 24.10 kcal/mol

[see Table 9 as ‘‘best computed’’, (bc), binding, Eb(bc)]

and -7.94574 hartree, respectively to be compared with

the a ‘‘recommended value’’ by Stwalley et al. [138] of

24.82 kcal/mol. The potential energy has a very flat mini-

mum, with a computed minimum at 5.00 bohr, to be

compared with a ‘‘recommended value’’ [144] of 4.91 bohr.

The computed atomic Li [2S] to Li [2P] excitation

energy is 0.06797 hartree in excellent agreement with the

experimental value of 0.06791 hartree [145].

10 Chemical orbitals

In this section, we propose a new one-electron function,

designated the ‘‘CO’’, which, on one hand retains the main

characterization of traditional orbitals AO and MO but on

the other hand ensures—by construction—a larger varia-

tional freedom optimally tuned for different internuclear

separations.

The 1Rþg ground state for the H2 molecule is the tradi-

tional test for proposals of quantum mechanical models; we

display (Fig. 7, left inset) the very accurate, but computa-

tionally demanding, potential energy curve obtained by

Kołos et al. [109]. The wave function is a 249 term

expansion with elliptic type basis set, yielding the accurate

binding energy of 109.48 kcal/mol, computed from large

internuclear distances to 0.2 bohr. In the figure, to the

Kołos et al. landmark computation we add the potential

energy computations for the HL, the HF and the HF–HL–i

(2), the latter with two ionic structures. In the right insert

we display an equivalent representation by reporting both

the electronic energy, obtained in the Born–Oppenheimer

approximation, and the nuclear–nuclear repulsion. Kołos

et al. [109] work is our target in the CO computations

below analyzed.

We recall that the long expansions in MC–SCF,

CASSCF, MC–HL and VB, and the relative short expan-

sion in the HF–HL model (Eqs. 16–19) is related to the fact

that the MO and the AO functions lack sufficient varia-

tional freedom, since restricted by ‘‘construction

constraints’’, orthogonality, and occupation rules (two

electrons for the same space–orbital). These limitations

were critically considered last century, starting from the

mid fifties, leading to the introduction of new orbital rep-

resentations aiming at more compact representations. We

recall for example the proposals of the Natural Orbitals by

Löwdin [122, 123], of the Alternant Orbitals by Pauncz

[146], of the non paired spatial orbitals by Linnett [147], of

the Electron Propagators by Linderberg [148], Öhrn [148,

149] and Ortiz [150], of the half projected HF functions by

Smeyers [151], and of the Geminals, the latter considered

also recently by Taylor [152] among others. A survey on

‘‘different orbitals for different spins’’ methods is reviewed

by Pauncz [153]; the importance of relaxing the orthogo-

nality constrains has been often documented [154].

Returning to Herzberg [9] and Mulliken [155] orbital

correlation diagrams for diatomic molecules, mentioned

in Sect. 3, we note that each correlation path is identified

by four one-electron functions (occupied either by one or

two electrons), specifically two AOs at dissociation, one

Fig. 7 Potential energy (hartree) for the H2 ground state. Left inset computation with the HF, HL, HF–HL–i(2) models and from Kołos et al.

[109]. Right inset electronic energy, nuclear–nuclear interaction and total energy from Kołos et al
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MO in the intermediate region, and another AO at the

united atom, yielding a path valid from dissociation to the

united atom.

For each path, occupied with two electrons, i and i ? 1,

we define two new one-electron space functions, called

CO, designated ui and ui?1, to which we associate anti-

parallel spins yielding the spin–orbitals Ui and Ui?1. The

CO one-electron space function is constructed by a com-

bination of traditional AO-like functions and MO-like

traditional functions, both assumed to be linear combina-

tions of basis sets centred at nuclear positions. Neglecting

for the moment the united atom, the ui and ui?1 fulfil the

point group symmetry requirements of the system and are

formed as a linear combination of the above defined MO

and AO components. The first component, designated /j,

replaces the traditional symmetry adapted MO function, the

second component, denoted uk(A) or ul(B), replaces the

traditional AO functions for an electron on atom A or B,

respectively. Thus, we write the two space-components of

the CO as:

uiðccÞ ¼ ½c1UjðcÞ þ c2ukðAÞ�i ð21aÞ

uiþ1 ccð Þ ¼ c1Uj cð Þ þ c2ul Bð Þ
� �

iþ1
ð21bÞ

where the notation cc indicates that the CO has the

symmetry of /j, the MO-like component, with c1 and c2 the

variational coefficients. To represent the united atom, ua,

we add AO-like functions, denoted um(ua), centred

midway two nuclei; thus the full expression for ui(cc) and

ui?1(cc) in a diatomic molecule becomes:

ui ccð Þ ¼ c1Uj cð Þ þ c2uk Að Þ þ c3um uað Þ
� �

i
ð22aÞ

uiþ1 ccð Þ ¼ c1Uj cð Þ þ c2ul Bð Þ þ c3um uað Þ
� �

iþ1
ð22bÞ

When in Eq. 22 the coefficients c1 = c3 = 0 then the

CO reverts to traditional AOs, but when c2 = c3 = 0 then

the CO reverts to traditional MO. This consideration shows

that the CO orbital is a generalized representation which

includes both the AO and the MO viewpoints.

Consider a n electron diatomic molecule, A–B, which

dissociates into the A and B atoms of atomic numbers Z(A)

and Z(B), respectively; the united atom for the molecule AB

has atomic number Z(ua) = Z(A) ? Z(B), and is assumed

to be in its lowest electronic state, compatibly with the

Wigner and Witmer rules [74]. We consider once more the

orbital correlation diagram, specifically a p-path connect-

ing (1) at dissociation the two AOs, uk(A) and ul(B), (2) in

the binding region the MO /j, and (3) at the united atom,

the AO um(ua).

In the CO model, to the p-path there correspond two CO

spin–orbitals Ui = uia and Ui?1 = u(i?1)b with (i = 1,…,

n/2) and ui = u(i?1) defined as:

Ui ccð Þ ¼ ui ccð Þa ¼ c1Uj cð Þ þ c2uk Að Þ þ c3um uað Þ
� �

i
a

ð23aÞ

Uiþ1 ccð Þ ¼ uiþ1 ccð Þb
¼ c1Uj cð Þ þ c2ul Bð Þ þ c3um uað Þ
� �

iþ1
b ð23bÞ

with c variational coefficients. In the ui orbital the MO-like

term /j, is combined with the uk(A), whereas in the ui?1

orbital the same MO-like term is combined to a different

AO term, the ul(B), thus the electrons ‘‘maintain a

memory’’ of the original atoms, A and B, yielding

different orbitals for different spins. The two CO, (ui)

and (ui?1), are normalized and non-orthogonal. With the

set of the U1,…, Un spin orbitals we construct the WCO

wave-function:

WCO ¼ AN u1ð1Þu2ð2Þ. . .unðnÞHSMð1; 2; . . .; nÞ
� �

ð24Þ

where A is the anti-symmetrizer operator, N is the nor-

malization constant and HSMthe spin eigen-functions with

the required values of S and M (i.e. a linear combination of

spin products). With the CO model we can introduce full

correlation correction in the wave functions via variational

linear expansion of WCO functions, W = RiciWCO(i).

The CO orbital replaces the traditional AO and MO; in

Fig. 1 we show wave functions for H2 obtained in the HF,

HL, HF–HL and CO representations.

The CO orbital is selected to represent those electrons

we correlate ab initio. Often it is convenient to separate the

electrons we wish to compute accurately from those we

assume less directly responsible for some molecular

property of interest [44], like the binding energy. For

example, we might choose to correlate firstly the binding

electrons, then the valence electrons and lastly the inner

shell electrons. This approach leads to a combined use of

different orbitals, CO with MO and/or AO. A wave func-

tion with a ‘‘mixed representation’’ of orbitals is designated

WCO–HF, if constructed with COs and MOs, WCO-HL if made

up of COs and AOs and WCO–HF–HL if constructed with

COs, MOs and AOs. Thus, the set of u1,…,un orbitals in

Eq. 24 can be partially replaced either by AOs or MOs. For

example we can have

WCO�HF ¼ AN MO1ð1Þ. . .unðnÞHSMð1; 2; . . .; nÞ
� �

ð24aÞ

or

WCO�HL ¼ AN AO1ð1Þ. . .unðnÞHSMð1; 2; . . .; nÞ
� �

ð24bÞ

Let us consider the ground state of LiH, represented in the

HF model by the electronic configuration 1r22r2 or in the

HL model by the ‘‘structure’’ 1s2
Li2s1

Li1s1
H. The WCO is

constructed with the inner shell electrons CO orbitals

u1(1rC) = c11rþ c21sLi þ c31sBe½ �, and u2(1rc) = c11rþ½
c21s0Li þ c31sBe� and, for the valence electrons, with the CO
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orbitals u3(2rc) = c12rþ c22sLi þ c32sBe½ �, and u4(2rc) =

c12rþ c21sH þ c32sBe½ �:
If we wish to correlate only the binding electrons with a

WCO–HF function then we can use the 1r2 MO represen-

tation for the inner shell electrons and u3(rc) and u4(rc) for

the binding electrons; alternatively in a WCO-HL function,

the inner shell electrons are represented with the 1s2
Li AO

and u3(rc) and u4(rc) are used for the binding electrons.

In order to understand the formal relation of WCO to

WHF, WHL, and WHF-HL and to rationalize the presence of

ionic structures in homopolar molecules, we decompose

WCO into a set of determinantal wave functions of HF and

HL type. To simplify the discussion we focus on the WCO

for the H2[1Rþg ] ground state, denoted WCO(1rg,c):

WCO 1rg;c

� �
¼ AN

U1ð1ÞU2ð1Þ
U1ð2ÞU2ð2Þ

�����
����� ¼ N D1 � D2ð Þ ð25aÞ

with

D1 � D2 ¼
u1ð1Það1Þu2ð1Þbð1Þ
u1ð2Það2Þu2ð2Þbð2Þ

�����
������

u1ð1Þbð1Þu2ð1Það1Þ
u1ð2Þbð2Þu2ð2Það2Þ

�����
�����

ð25bÞ

Neglecting for the moment the united atom term, we

write u1 and u2 as:

u1 1rg;c

� �
¼ c11rg þ c21sA ð26aÞ

u2 1rg;c

� �
¼ c11rg þ c21sB ð26bÞ

The decomposition of the two determinants in Eq. 25

yields a wave function Wco of the form:

WCO ¼ N 2c2
1WHF þ c2

2WHL þ 2c1c2 W0HL þW00HL

� �� 	
ð27Þ

or, in general, the related variational HF–HL wave function

given below

W ¼ c01WHF þ c02WHL þ c03 W0HL þW00HL

� �
ð28Þ

where the c0 are variational coefficients and

W0HL ¼ A 1rga1sBb
�� �� W00HL ¼ A 1sAa1rgb

�� ��
A further decomposition of the wave functions

containing the 1rg molecular orbital, into W0HL and W00HL,

yields a function, designated ‘‘adjoined HF–HL function’’,

Wa
HF�HL

, given below:

Wa
HF�HL ¼ c01WHF þ c02WHL þ c03W

�
HL þ c04W

��
HL

þ c05WHL;iA þ c06WHL;iB ð29Þ

with

WHF ¼ A 1rga1rgb
�� �� WHL ¼ A 1sAa1sBbj j

W�HL ¼ A 1s0Aa1sBb
�� �� WHL;iA ¼ A 1s0Aa1sAb

�� ��
W��HL ¼ A 1sAa1s0Bb

�� �� WHL;iB ¼ A 1s0Ba1sBb
�� ��

and where the coefficients c0i are variational parameters

(subject to the symmetry constrains, c03 = c04 and

c05 = c06). Note that 1sA and 1sB are rather similar to

1s0A; and 1s0B and this can lead to redundancy in the solution

of Eq. 29. In the above analyses, we have simplified the

CO of Eq. 23 by neglecting the united atom term. Clearly,

inclusion of the united atom will increase the number of

terms in Eq. 29 with functions related to the He atomic

ground state; this brings about additional variational

flexibility, particularly at short internuclear distances.

We have obtained an important conclusion: the WCO

wave function of Eq. 25a is equivalent to specific extended

HF–HL–i, which we call the ‘‘adjoined HF–HL–CO’’

function, denoted as Wa
HF�HL:

11 Chemical Orbitals for the H2 molecule

In the following, we compare the WHF, WHL, WHF-HL, WHF-

HL-i functions with the CO adjoined Wa
HF�HL for the H2

ground state. This comparison advises to revisit the original

classical computations with minimal basis sets performed

with Slater type orbital, STO, by Heitler and London [8]

and by Coulson for the LCAO–MO model [156]. The

many-centre integrals with STO are computed with the

SMILES set of computer codes [157].

We start with HF and HL wave functions. For the WHF

one 1s STO, with optimized orbital exponent fHF = 1.197

yields Re = 1.39 bohr and a binding of 87.27 kcal/mol,

confirming the original Coulson computation [156]. For the

WHL a 1s STO with orbital exponent fHL = 1.0 yields a

binding of 72.76 kcal/mol reproducing the value of the

original Heitler–London computation [8]; optimization of

the 1s orbital exponent leads to fHL = 1.1670 and a

binding of 87.27 kcal/mol at Re = 1.41 bohr.

A computation of WHF–HL with one 1s STO optimized at

each internuclear separation, yields f HF–HL = 1.194 at

Re = 1.43 bohr, with a biding of 92.83 kcal/mol. This

basis set could be considered ‘‘sub-minimal’’, since we

have used the same orbital exponent for the 1s STO in HF

and HL models, whereas a minimal basis set for WHF–HL

would call for distinct values for fHF and fHL. However,

optimization of these two parameters yields fHF = 1.194,

fHL = 1.194 for Re = 1.43 and a binding of 92.83 kcal/

mol; indeed full expansions of both models leads to the

same energy, as discussed by Coulson.

A minimal basis set computation for WHF–HL–i with

optimal parameters yields fHF = 1.1878, fHL = 1.1647,

fH- = 1.2050 for Re = 1.42 and a binding of 94.62 kcal/

mol; this energy improvement follows the increased flexi-

bility introduced by augmenting the basis set, the ionic 1s

function in our case.
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A ‘‘sub-minimal’’ basis set for the Wa
HF�HL model,

Eq. 29, makes use of one 1s STO for the H atom (assuming

fHF = fHL = fH-) and one 1s STO for He [1S(1s2)], the

united atom. The 1 s orbital exponent for the H atom,

optimized at each internuclear separation, is fH = 1.180 at

Re = 1.42 bohr; for the He united atom we use

fHe = 1.6875, the atomic minimal basis set value for

He(1S) (yielding an atomic energy of -2.84766 hartree

[85]); with these two 1s functions the computed binding is

96.05 kcal/mol. A minimal basis set Wa
HF�HL computation

with distinct fHF, fHL, and fH—taken, however, from the

previous WHF–HL–i computation and an optimized value for

fHe yields, at Re = 1.42, fHe = 1.349 and a binding of

98.51 kcal/mol. Finally, simultaneous re-optimization, at

Re = 1.42, of all the orbital exponents, fHF, fHL, fH-, and

fHe, yields a Wa
HF�HL with a binding of 98.55 kcal/mol

and fHF = 1.18697, fHL = 1.16702, fH- = 1.20748, and

fHe = 1.3100. This concludes our analysis of minimal

basis set STO computations; previously [1, 44] we have

reported only a partial set of the computations with mini-

mal STO basis sets.

Additional improvements, but maintaining the constraint

of minimal basis sets, can be obtained by configuration

interactions. For example, addition of one Wa
HF�HLðp2

uÞ
configuration with fHF = 1.1716, fHL = 1.1649, fH- =

1.2075, and fHe = 1.3075, fp,HF = f p,HL = 2.065, and

fHe,2p = 1.512 yields a binding energy of 106.02 kcal/mol

and Re = 1.40. This last computed binding energy can be

compared with the excellent work by McLean et al. [158]: a

basis set of five optimized STO (1s,1s0, 2s, 2pr, 2pp) and ten

CI configurations, yields a binding of 104.96 kcal/mol.

The potential energies for these computations are

reported in Fig. 8; in Table 10 we report the STO orbital

exponents, the binding energy, the computed equilibrium

separation, and the corresponding experimental values. At

the STO minimal basis set level, the best computed ener-

gies using different ‘‘one electron functions’’ are in the

following order: first the Wa
HF�HL (98.55 kcal/mol), fol-

lowed by WHF–HL–i (94.62 kcal/mol), WHF–HL (92.47 kcal/

mol) then by WHL (87.27 kcal/mol) and finally by WHF

(80.45 kcal/mol).

The energy improvements are related to an increased

dimensionality of the variational space (with the full CI as

its limit) either due to an increase in the number of basis

functions, or to a decrease in the constrains implicit in the

adopted one electron function, AO, MO, or CO. The MO

has the constrain of its ionic component, the CO has the

same constraint but is more flexible than the MO because

of the added function at the united atom. Indeed, in H2,

comparing HF and HL, the results in Table 10 show a

better value for HL since the HL wave function is com-

posed by two determinants rather than one, as in the HF

wave function. The HF–HL wave function is composed by

three determinants, thus is expected to yield a better energy

relative to HF or HL alone. Notice that when only one basis

function is used, the HF full CI energy (the wavefunction is

composed by two configurations, gerade and ungerade),

coincides with the HL full CI energy (with wavefunction

composed by three configurations, one covalent and two

ionic); the same energy value is obtained by combining the

HF gerade configuration with the covalent HL configura-

tion, i.e. the HF–HL wavefunction.

These computational results characterize the evolution

in classical one-electron function representations with

variational quantum chemical computations since 1927.

We have experimented with a more extended basis set

of Slater type functions, specifically six 1s, one 2s, six 2p,

four 3d, and one 4f functions on the H atoms with a four 1s,

two 2s, three 2p Slater type functions on the united atom;

the Wa
HF�HL binding and total energies are 108.72 kcal/mol

and -1.17314 hartree, respectively, with a multi-configu-

ration of three r, two p and two d configurations (see

Table 10).

Let us consider computations with an extended basis

sets of gaussian type functions. For the H atom we use a

basis set of gaussian functions, with ten 1 s, five 2p, four 3d

functions and one 4f gaussian function, contracted to

6,5,4,1 functions, respectively. This is a reasonably accu-

rate basis set, yielding a full CI binding of 109.09 kcal/mol

and a total energy of -1.17384 hartree. In these compu-

tations we have included the He united atom component,

computed with a basis set yielding the correct Hartree–

Fock total energy of -2.861679 hartree for the He(1S) [83]

and -2.90089 hartree from a full CI computation, a value

near to -2.90372 hartree, the exact non relativistic energy

[159].

We recall that the single configuration WCO½1r2
g;c� is not

expected to yield a fully correlated wave function, since the

Fig. 8 Single configuration STO computations minimal basis set for

H2. Potential energy curves from HF, HL, HF–HL, and CO methods
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latter requires linear combination of WCO½1r2
g;c�with con-

figurations of different symmetry, and/or higher excitations,

like WCO½2r2
g;c�, WCO½1p2

u;c�, WCO½1r2
g;c�, etc… For each one

of the aboveWCOfunctions there is an adjoined HF–HL–CO

function, denoted Wa
HF�HL½1r2

g;c�, Wa
HF�HL½2r2

g;c�, Wa
HF�HL

½1p2
u;c�and Wa

HF�HL½1p2
g;c�, respectively.

We consider four different configuration expansions,

W(I), W(II) W(III) W(IV) adjoined functions, specifically:

W Ið Þ ¼ WCO 1r2
g;c

h i

W IIð Þ ¼ c1W Ið Þ þ c2WCO 2r2
g;c

h i

W IIIð Þ ¼ c1W IIð Þ þ c2WCO 1p2
u;c

h i

W IVð Þ ¼ c1W IIIð Þ þ c2WCO 1p2
g;c

h i

The computational results are summarized in Table 11

and partly displayed in Fig. 9. Details are reported in Ref.

[44].

The W(I) wave function at R = 1.40 bohr yields the

electronic energy of -1.87375 hartree with a binding of

100.07 kcal/mol. At R = 0 the electronic energy is

-2.86168 hartree, namely the He Hartree–Fock energy.

The computation of W(II), yields binding energies of

Table 10 H2 ground state

computations of the binding

energy Eb (kcal/mol) at the

computed equilibrium

internuclear distance Re (bohr)

with minimal (min.) STO basis

sets for different models: WHF,

WHL, WHF–HL, WHF–HL–i, and

Wa
HF�HLfrom WCO of 1 and 2

and 7 configurations

a With seven configurations:

three r, two p, two d
b Ref. [109]

Config. Model STO orbital exponents Eb, kcal/mol Re, bohr

r2
g WHF (min.) fHF = 1.1872 80.45 1.39

r2
g WHL (min.) fHL = 1.1670 87.27 1.41

r2
g WHF–HL (min.) fHF–HL = 1.194 92.83 1.43

r2
g WHF–HL–i (min.) fHF = 1.1878, fHL = 1.1677, fH– = 1.2050 94.62 1.43

r2
g Wa

HF�HL(min) fHF = fHL = fH– = 1.189, fHe = 1.6875 96.05 1.42

r2
g Wa

HF�HL(min.) fHF = 1.188697, fHL = 1.16702

fH– = 1.2074, fHe = 1.3100

98.55 1.42

r2
g þP2

u Wa
HF�HL(min.) fHF = 1.1716, fHL = 1.1649, fH– = 1.2075,

fHe = 1.3075 fp,HF = fpHL = 2.065,

fpHe = 1.512

106.02 1.40

Seven conf.a Wa
HF�HL (Extended basis set; see text) 108.72 1.40

Kołos et al.b 109.48 1.40

Table 11 H2 and LiH ground state energies with extended approximately optimal, gaussian basis sets. Top for H2: number of CI terms in WCO

wave function expansion, electronic energies (hartree), Eel(R = 0), Eel(R = 0.1) at R = 0 and R = 0.1 bohr, total energy (hartree) at

R = Re = 01.40, ETot(Re), binding energies (kcal/mol) at R = 1.40 bohr, Eb. Bottom for LiH: Equilibrium total energies (hartree), ETot(Re), and

binding energies (kcal/mol), Eb, with and without Be united atom component

H2
a CI # terms Eel (R = 0) Eel(R = 0.1) ETot(Re) Eb

W(I) 1 –2.86168 –2.85352 -1.15946 100.07

W(II) 2 -2.877999 -2.85486 -1.16039 100.65

W(III) 3 -2.89707 -2.86830 -1.17190 107.87

W(IV) 4 -2.89810 -2.86873 -1.17227 108.10

W(XI) 11 -2.89985 -2.87020 -1.17358 108.92

Full CIb 1,078 – – -1.17384 109.09

LiH ETot (Re)

without Be

ETot (Re)

with Be

Eb without Be Eb with Be

WHF–HL -8.00230 n. a.b 43.66 n. a.b

WHF–HL–i -8.00699 n. a.b 46.59 n. a.b

WCO–HF -8.00365c -8.01506c 44.51 51.67

W(I) -8.02327 -8.02950 43.79 47.69

W(II) -8.05455 -8.05873 53.75 56.38

a H2 exact n.r. binding 109.485 kcal/mol
b Not-applicable due to method construction
c With 1r2 frozen to the 1r2 HF orbital
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100.65 kcal/mol. At R = 0 the electronic energy is

-2.87799 hartree, thus the united atom starts to be corre-

lated. Computation of W(III), yields binding energies of

107.87 kcal/mol; at R = 0 the electronic energy is

-2.89810 hartree, not far from the exact value [159] of

-2.90372 hartree for He. The computations of W(IV) show

no appreciable improvement in the binding energies,

108.10 kcal/mol, indicating that the linear expansion with

this basis set has essentially converged at W(IV).

The binding energy from W(IV) is not far from the value

108.56 kcal/mol obtained with the HF–HL method and a

22 term expansion. An 11 configuration expansion, W(XI),

yields a total energies of -1.17358 hartree, and a binding

energy of 108.92 kcal/mol. With this computation we feel

that the convergence of the WCO expansion is essentially

reached with this Gaussian basis set.

To approach more closely the energy values obtained by

Kołos et al. [109] the basis set should include functions with

more accurately optimized orbital exponents and of higher

angular momentum; however, this requires more and more

computer time. Indeed, a somewhat larger Gaussian basis set

(addition of three 4f and one 5g functions) for a seven con-

figurations wave function yields a binding of 109.01 kcal/

mol. Alternatively, with a somewhat larger basis set of STO

functions (relatively to the one previously discussed) namely

by adding a 5g STO, the computed total and binding energies

are -1.174302 hartree and 109.33 kcal/mol, respectively;

equivalently, with an improved Gaussian function basis set

(with 6 h functions) the computed energies are -1.174382

hartree and 109.43 kcal/mol (work in progress) not far from

the exact value 109.47 kcal/mol. It seems clear that Kolos

value will be duplicated for example with a gaussian basis set

including up to ‘‘l’’ functions and about a dozen of

configurations.

In Fig. 9, left inset, we report the potential energy

curves for the HF, HL, HF–HL–i(2), and W(III) wave

function functions. In the right inset we report the com-

puted potential energy curves for WCO(III) and the

corresponding nuclear–nuclear repulsion and electronic

energy from united atom to dissociation. In this inset we

indicate the internuclear regions where the three orbital

components—AO for the united atom, MO for the mole-

cule and AO for the dissociated atoms—are dominant in

the CO representation.

In Fig. 1 we have compared the wave functions for the

HF, HL, HF–HL method, and with W(XI), designated

CO(I). The ‘‘different orbital for different spins’’ character

of the CO is evident from the figure.

Above we have compute the electronic energy of H2

from dissociation—two H (2S) atoms—to He(1S), the

united atom. In the same way that we have formed He, by

approaching a H atom to a target atom (the second H atom

in the case of H2), we can compute the electronic energy of

any atom A(Z)—with atomic number Z—by approaching a

H atom to the atom A(Z–1), where the atom A(Z) is the

united atom of the process. Thus, a sequential set of this

type of computations is capable to construct ab initio the

entire periodic table of the elements, simply by starting

with hydrogen atoms colliding with an atom, which is the

united atoms computed in the previous computation. In

short, we need only H atoms to build the entire set of atoms

of the periodic table. Clearly the above sequential pro-

cesses needs—at the end of each step—inclusion from a

suitable source of the appropriate number sub-nuclear

particles (e.g. the neutrons) to yield stable nuclear struc-

tures, conforming to laboratory observations; this,

however, is not a concern in Born–Oppenheimer

computations.

Fig. 9 H2 ground state. Left inset ground state potential energy curves with extended gaussian basis set from HF, HL, HF–HL–i(2), W(III), Kołos

et al. [109]. Right inset: W(III) computed energies from WCO model from He(1S) at R0 = 0 to dissociation [two H(2S) atoms]
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12 Chemical orbitals computation for the LiH molecule

In molecules with many electrons the computation of

the ‘‘adjoined HF–HL’’ function Wa
HF�HL implies a

rather heavy computational task, since to each CO there

corresponds a large set of decomposition terms (see

Eq. 29). For this reason, considering LiH, we have

introduced the simpler WCO–HF type function and

WCO–HL type function functions (Eqs. 24b, c) the first

one, WCO–HF, with the two COs for the binding electrons,

and the traditional MO 1r2 for the inner shell and the

second function, WCO–HL, again with two COs for the

binding electrons but the traditional AO 1s2
Li for the inner

shell.

We first report on WCO–HF and WCO–HL and then on a

full WCO; the gaussian basis set adopted is the one reported

in Sect. 4.

The electronic configuration for WCO–HF is 1r2

u3(2rc)u
1

4(2rc)
1; its computation without the Be united

atom term, yields a binding energy of 44.51 kcal/mol and a

total energy of -8.00365 hartree. The computation of

WCO–HL with configuration 1s2
Liu3(2rc)

1u4(2rc)
1, also

without the Be united atom, yields essentially the same

binding energy and total energies, since the HF and HL

core are very similar. Inclusion of the united atom,

Be[1S(1s22 s2)] and Be[1S(1s22p2)], brings the computed

binding energy to 51.67 kcal/mol, and the total energy to

-8.01506 hartree.

For WCO we present two computations: the first W(I) is a

one configuration WCO function with configuration

u1(1rc)
1u2(1rc)

1u3(2rc)
1u4(rc)

1), the second W(II) is a

linear combination of three WCO functions, namely W(I) to

which we have added two new configurations u1(1rc)
1

u2(1rc)
1u3(1p)1u4(1p)1) and u1(1rc)

1u2(1rc)
1u3(1pr)1

u4(1pr)1) with 2pp and 2pr functions on the Li and H atoms

(see Table 11).

The W(I), without the Be united atom, yields a binding

energy of 43.79 kcal/mol and a total energy of -8.02327

hartree; inclusion of the Be united atom yields a binding

energy of 47.69 kcal/mol and a total energy of -8.02950

hartree.

Next we improve the binding with W(II). Without the Be

united atom component it yields a binding energy of

53.75 kcal/mol and a total energy of -8.05445 hartree; the

full computation with the Be united atom yields a binding

of 56.38 kcal/mol and a total energy of -8.05873. The

computed total energy at dissociation is -7.96889 hartree

not far from the exact non-relativistic energy value [134] of

-7.97806 hartree. From this study we can conclude that

the WCO–HF and the WCO–HL represent a useful simplifi-

cation to the computation of WCO.

13 Genealogy of the HF–HL method

There are—by now—many approaches in quantum chem-

istry; therefore, for a new method it is informative to

attempt to draw its genealogical tree.

In Fig. 10 we present the genealogical tree for the HF–

HL and the CO methods, staring from the beginning of

quantum chemistry. Note that each method has it own

genealogical tree, and a full representation of all the

methods would bring about not a single tree but … a forest.

Recognizing that the physical length of the printed page

limits the number of entries, we beg the indulgence of the

reader for omissions.

We are interested in the origins of the HF–HL and of the

Chemical Orbital methods, given on the bottom of the

figure; thus we cover in the figure the developments from

the late 1920s to the first decade of this century.

At the top we list a few names relevant to the HF–HL

method for their seminal proposals. This first line needs no

comment; it remind us, however, that very little is con-

ceptually new—in a rigorous sense of the word—in today

computational chemistry: the concepts birth-dates are

around the early 1930, the computer implementations start

in the early 1960s, followed by continuous improvements,

Fig. 10 Genealogy of the HF–HL and of the Chemical orbitals

methods
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keeping up with the computer industry progress and the

expanding interest of chemistry into pharmacology, new

materials, medicine and ecology, etc.

The HF–HL method has clearly its roots both in the HL

and in Roothaan’s RHF methods. This neglects the tech-

niques needed to deal with the correlation effects. Basic to

our treatment of the correlation energy is the realization

that the correction is not dependent from a single source

but from several; thus the decomposition into near-degen-

eracy effects, molecular extra correlation, and atomic

correlation. All this leads in the genealogical three to a link

from Clementi’s work in IBM San Jose, [92, 160] to the

HF–HL and the CO models. Finally, the use of DFA, the

Coulomb Hole approximation in particular, requires a link

to DFA’s line of development, initiated by Wigner. We

recall in this contest that the Lie and Clementi functional

(designated in the figure as ‘‘LC’’) and the Colle–Salvetti

functional [140] (designated as ‘‘CS’’) are the earliest

attempts to use density functional for Multi configuration

functions. The use of multi configurations, particularly

MC–HL, in the HF–HL method calls for a link to the Multi

Configuration line of development, with Hartree at its

origin, but the use of non-orthogonal orbitals calls partic-

ularly for a link to Löwdin and to the Uppsala international

school started in the mid ninety fifty [121, 122, 146–154],

denoted simply as ‘‘Löwdin’’ in Fig. 10. Since parallel to

the DFA approach there is the Slater xa formulation, the

latter is included in Fig. 10, as a step of importance.

14 Conclusions

We have considered a few logically and formally related

models proposed to describe the electronic structure of

molecules within the variational approach.

Two traditional quantum chemical molecular methods,

HF and HL, were advanced in the early 1930; both

underestimate the total energy by a large percentual error

in the binding energy, and the HF model yields incorrect

dissociation.

The HF–HL model recently proposed (1) provides a

method for variational ab initio computations of the

molecular extra correlation energy, leading to very realistic

computations of the binding energies obtained with rela-

tively short linear expansions, (2) even at its simplest level

(Eq. 16) the HF–HL model constitutes a reliable ‘‘zero-

order reference wave function’’ with correct dissociation

and qualitative correct binding, (3) with the Coulomb hole

density functional it allows to easily obtain realistic total

energy (4) both for ground and excited states, and (5) it

demonstrates the clear complementarities of HF and HL

methods, replacing incorrect assumptions of antagonisms.

The HF–HL method is based on the combination of two

traditional orbitals, MO and AO, thus it requires two

models, the HF and the HL, and a set of pragmatic rules

proposed to select the HF configurations and HL structures.

This somewhat redundant situation has evolved with the

introduction of the CO, which retains the characteristic of

both the traditional MO and AO orbitals, adds variational

flexibility and uses only one type of one electron functions.

Thus the CO is a new, flexible and very compact one-

electron function, which provides the logical origin of the

HF and VB methods, and brings to a conclusion the evo-

lution of the two classical variational methods. This

evolution path logically starts with WCO then it progresses

to Wa
HF�HL and subsequently to WHF–HL; here it bifurcates

into two avenues the first one is the WHF method, with

subsequently FCI, MC–SCF, CSSCF, CASSPT2 tech-

niques and the second avenue is given by WHL method with

subsequently the different VB implementations. Realistic

binding energies can be obtained either at the start (Wa
HF�HL

and WHF–HL) with relatively short expansions or at the end

(FCI and CASSPT2) with very long expansions.

We conclude that in theoretical chemistry much pro-

gress has been made since its beginning 1980 to 1990 years

ago; this is true also for computational chemistry.

The traditional ‘‘chemical bond’’ is a partial and local-

ized representation extracted from model equations which

only mimics the nature of a ‘‘molecule’’ still often con-

sidered at zero temperature and in vacuo. But the concept

of ‘‘chemical bond’’ remains most useful to those interested

in building up or in breaking molecules in a laboratory or in

an industrial assembly line, at finite temperatures and not in

vacuo. The outstanding intuition and creativity of labora-

tory chemists and biochemists appear to be able to

compensate theoretical limitations; indeed, chemistry is not

reducible to quantum mechanics.

Recalling [1–3] the apeiron of Tales, the atom of De-

mocritus, the rituals of the alchemy time, the hypotheses on

phlogiston, caloric, chemical affinity, vital force, the atom

of Dalton, the atom of Bohr, the Lewis-pair, the semi-

empirical models, the evolving concepts of one-electron

function from Atomic, Molecular, and Chemical Orbitals,

as well all the ab initio quantum chemistry representation

of today theoretical and computational chemistry, we wit-

ness a many centuries evolution more and more based on

physical concepts; but we are still at an early stage in the

search for an satisfactory representation of a model of the

chemical bond with ‘‘ reliable bond transferability, mole-

cule to molecule’’ within a realistic environment.
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55. Brändas EJ, Kryachko ES (eds) (2003) Fundamental work of

quantum chemistry. Kluwer, Boston

56. Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) (2005)

Theory and applications of computational chemistry: the first 40

years. Elsevier, Amsterdam

57. Planck M (1901) Ann Physik 309:553–563

58. See Kemble EC (1937) The fundamental principles of quantum

mechanics. McGraw-Hill, New York

59. See Tolman RC (1934) Relativity, thermodynamics and cos-

mology. Oxford

60. de Broglie L (1923) Comptes rendues de l’Académie des Sci-

ences 177:507–510

61. Uhlenbeck GE, Goudsmit S (1925) Naturwissenschaften

13:953–969

62. Pauli W (1925) Z Physik 31:765–783

63. Schroedinger E (1926) Ann Physik 79:361–392

64. Fermi E (1927) Rend Acc Lincei 6:602–607

65. Thomas LH (1927) Proc Cambridge Phil Soc 23:542–548

66. Dirac PAM (1929) Proc R Soc 123:714–733

67. Bohr N (1913) Phil Mag 26:1–25

68. Lewis GN (1916) J Am Chem Soc 38:762–785

69. Hartree W (1923) Proc Camb Philol Soc 21:625–634

70. Hartree DR (1928) Proc Camb Philol Soc 24:89–111

71. Hartree DR (1957) The calculation of atomic structure. Wiley,

New York

72. Hylleraas EA (1939) Z Phys 54:347–366

73. Mulliken RS (1932) Rev Mod Phys 4:1–86

74. Wigner E, Witmer EE (1928) Z Physik 51:859–886

75. Clementi E, Corongiu G, Stradella OG (1991) In: Clementi E

(ed) Density functionals for molecules, chap 8. MOTECC 1991,

ESCOM, Leiden

76. Clementi E, Chakravorty S (1990) J Chem Phys 93:2591–2602

77. Slater JC (1951) Phys Rev 81:385–390

234 Theor Chem Acc (2009) 123:209–235

123



78. Hermann F, Skillman S (1963) Atomic structure calculations.

Prentice-Hall, New York

79. (1960) Rev Mod Phys, vol 32, Special issue

80. Clementi E (1963) J Chem Phys 38:996–1000

81. Clementi E (1963) J Chem Phys 38:1001–1008

82. Clementi E (1964) J Chem Phys 41:295–302

83. Clementi E (1964) J Chem Phys 41:303–314

84. Clementi E (1965) Tables of atomic functions. IBM J Res Dev

(suppl 9)

85. Clementi E, Roetti C (1974) Atomic data and nuclear data

tables, Roothaan–Hartree–Fock atomic tables, vol 14, numbers

3–4. Academic Press, New York

86. Clementi E (1963) J Chem Phys 38:2248–2256

87. Clementi E (1963) J Chem Phys 39:175–179

88. Clementi E (1963) J Chem Phys 39:487–488

89. Clementi E (1965) J Chem Phys 42:2783–2787

90. Hartmann H, Clementi E (1964) Phys Rev 133:A1295–A1299

91. Clementi E (1964) J Mol Spect 12:18–22

92. Clementi E (1965) IBM J Res Dev 9:2–19

93. Slater JC (1960) Quantum theory of atomic structure. Mc Graw-

Hill, New York

94. Chakravorty S, Clementi E (1989) Phys Rev 39:A2290–A2296

95. Slater JC, Jonhson KH (1975) Phys Rev 5:B844–B853

96. Clementi E, Corongiu G (1997) Int J Quant Chem 62:571–591

97. Chakravorty SJ, Davidson ER (1996) J Phys Chem 100:6167–

6172

98. Davies DR, Clementi E (1965) IBMOL: Computation of wave-

functions for molecules of general geometry, IBM Research

Laboratory

99. Clementi E, Davis DR (1966) J Comp Phys 1:223–244

100. Golden S (1960) Rev Mod Phys 32:322–327

101. Clementi E, Corongiu G (2003) In: Kryachko ES, Brandas EJ

(eds) Fundamental aspects in quantum chemistry. Kluwer,

Dordrecht, pp 601

102. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

103. Kohn W, Sham LJ (1965) Phys Rev 140:A1113–A1138

104. Delley B (1990) J Chem Phys 92:508–517

105. St-Amant A, Salahub DR (1990) Chem Phys Lett 169:387–392

106. Mulliken RS (1952) J Phys Chem 56:295–311

107. Pauncz R (1995) The symmetric group in quantum chemistry.

CRC Press, Boca Raton

108. Huber KP, Herzberg G (1979) Molecular spectra and molecular

structure IV. Constants of diatomic molecules, Van Nostrand

Reinhold, New York

109. Kołos W, Szalewicz K, Monkhorst HJ (1986) J Chem Phys

84:3278–3283

110. Anderson JB (2004) J Chem Phys 120:9886–9887

111. Kaledin LA, Kaledin AL, Heaven MC, Bondybey VE (1999)

Theochem 461:177–186

112. Chase MW Jr, Davis CA, Douney CA Jr, Frurip DJR, Donald R,

Syverud AN, (1985) J Phys Chem Data 14, Suppl 1

113. Urdhal RS, Bao Y, Jacson WM (1991) Chem Phys Letters

178:425–428

114. Aziz RA, Slaman M (1991) J Chem Phys 94:8047–8053

115. Gengenbach R, Hahn Ch, Toennies JP (1973) Phys Rev 7:A98–

A103

116. Partridge H, Schwenke DW, Bauschlicher CW (1993) J Chem

Phys 99:9776–9782

117. Colin R, Dreze C, Steinhauer M (1983) Can J Phys 61:641–655

118. Persico M (1994) Mol Phys 81:1463–1471

119. Hofzumahus A, Stuhl F (1985) J Chem Phys 82:5519–5526

120. Zemke WT, Stwalley WC, Coxon JA, Hajigeorgiou PG (1991)

Chem Phys Lett 177:412–418
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